These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31191760)

  • 1. Recent advances with optical upconverters made from all-organic and hybrid materials.
    Hany R; Cremona M; Strassel K
    Sci Technol Adv Mater; 2019; 20(1):497-510. PubMed ID: 31191760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-Processed Organic Optical Upconversion Device.
    Strassel K; Ramanandan SP; Abdolhosseinzadeh S; Diethelm M; Nüesch F; Hany R
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23428-23435. PubMed ID: 31179678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squaraine Dye for a Visibly Transparent All-Organic Optical Upconversion Device with Sensitivity at 1000 nm.
    Strassel K; Kaiser A; Jenatsch S; Véron AC; Anantharaman SB; Hack E; Diethelm M; Nüesch F; Aderne R; Legnani C; Yakunin S; Cremona M; Hany R
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11063-11069. PubMed ID: 29527890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization.
    Chu X; Guan M; Li L; Zhang Y; Zhang F; Li Y; Zhu Z; Wang B; Zeng Y
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4976-80. PubMed ID: 22931090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic-Inorganic Hybrid Perovskite Photovoltaic Absorber.
    Yu BH; Cheng Y; Li M; Tsang SW; So F
    ACS Appl Mater Interfaces; 2018 May; 10(18):15920-15925. PubMed ID: 29664604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared.
    Mu G; Rao T; Zhang S; Wen C; Chen M; Hao Q; Tang X
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45553-45561. PubMed ID: 36166596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices.
    Strassel K; Hu WH; Osbild S; Padula D; Rentsch D; Yakunin S; Shynkarenko Y; Kovalenko M; Nüesch F; Hany R; Bauer M
    Sci Technol Adv Mater; 2021 Apr; 22(1):194-204. PubMed ID: 33907525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Lead-free Organic-Inorganic Hybrid Semiconductor Single Crystals for a UV-Vis-NIR Broadband Photodetector.
    Liu F; Cai X; Liu K; Rafique S; Behrouznejad F; Bu K; Lü X; Wang J; Wu S; Wang X; Pan Y; Li X; Cai Y; Zhu J; Qiu Z; Yu A; Shen H; Wang J; Zhan Y
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35852172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors.
    Wu Z; Zhai Y; Kim H; Azoulay JD; Ng TN
    Acc Chem Res; 2018 Dec; 51(12):3144-3153. PubMed ID: 30520307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells.
    Sun J; Wu J; Tong X; Lin F; Wang Y; Wang ZM
    Adv Sci (Weinh); 2018 May; 5(5):1700780. PubMed ID: 29876207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared phosphorescence: materials and applications.
    Xiang H; Cheng J; Ma X; Zhou X; Chruma JJ
    Chem Soc Rev; 2013 Jul; 42(14):6128-85. PubMed ID: 23652863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite-based photodetectors: materials and devices.
    Wang H; Kim DH
    Chem Soc Rev; 2017 Aug; 46(17):5204-5236. PubMed ID: 28795697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitized Yb
    Ishii A; Miyasaka T
    Adv Sci (Weinh); 2020 Feb; 7(4):1903142. PubMed ID: 32076593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Upconversion Display with an over 100% Photon-to-photon Upconversion Efficiency and a Simple Pixelless Device Structure.
    Song Q; Lin T; Su Z; Chu B; Yang H; Li W; Lee CS
    J Phys Chem Lett; 2018 Dec; 9(23):6818-6824. PubMed ID: 30398045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-toxic near-infrared light-emitting diodes.
    Guo K; Righetto M; Minotto A; Zampetti A; Cacialli F
    iScience; 2021 Jun; 24(6):102545. PubMed ID: 34151223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing.
    Xu Q; Meng L; Zeng T; Sinha K; Dick C; Wang X
    Opt Lett; 2019 Jan; 44(2):463-466. PubMed ID: 30644926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence.
    Xiong W; Zhang C; Fang Y; Peng M; Sun W
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes.
    Yang X; Ren F; Wang Y; Ding T; Sun H; Ma D; Sun XW
    Sci Rep; 2017 Nov; 7(1):14741. PubMed ID: 29116136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional light-emitting materials: preparation, properties and applications.
    Wang Z; Jingjing Q; Wang X; Zhang Z; Chen Y; Huang X; Huang W
    Chem Soc Rev; 2018 Aug; 47(16):6128-6174. PubMed ID: 30059108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NIR-quantum dots in biomedical imaging and their future.
    Gil HM; Price TW; Chelani K; Bouillard JG; Calaminus SDJ; Stasiuk GJ
    iScience; 2021 Mar; 24(3):102189. PubMed ID: 33718839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.