These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31192326)
1. The nanoscale Leidenfrost effect. Rodrigues J; Desai S Nanoscale; 2019 Jul; 11(25):12139-12151. PubMed ID: 31192326 [TBL] [Abstract][Full Text] [Related]
2. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
3. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature. Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Final fate of a Leidenfrost droplet: Explosion or takeoff. Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224 [TBL] [Abstract][Full Text] [Related]
7. Suppression of the Leidenfrost effect via low frequency vibrations. Ng BT; Hung YM; Tan MK Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924 [TBL] [Abstract][Full Text] [Related]
9. Leidenfrost droplet jet engine by bubble ejection. Lin Y; Wu X; Hu Z; Chu F J Colloid Interface Sci; 2023 Nov; 650(Pt A):112-120. PubMed ID: 37399747 [TBL] [Abstract][Full Text] [Related]
10. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface. Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023 [TBL] [Abstract][Full Text] [Related]
17. Effect of the Surface Peak-Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature. Jiao Y; Wang J; Guo Y; Du Y; Zhu Y; Ji J; Liu X; Liu K Langmuir; 2024 Oct; 40(39):20773-20782. PubMed ID: 39291359 [TBL] [Abstract][Full Text] [Related]
18. Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. Wang S; Zhao X; Wu X; Zhang Q; Teng Y; Ahuja R; Zhang Y Langmuir; 2021 Jan; 37(1):553-560. PubMed ID: 33393313 [TBL] [Abstract][Full Text] [Related]
19. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions. Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652 [TBL] [Abstract][Full Text] [Related]
20. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Li Q; Kang QJ; Francois MM; Hu AJ Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]