These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31192584)

  • 1. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?
    Huh H; Trinh HD; Lee D; Yoon S
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency.
    Kim S; Lee S; Yoon S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4163-4169. PubMed ID: 35006675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-driven protodeboronation reactions in nanogaps.
    Huynh LTM; Trinh HD; Lee S; Yoon S
    Nanoscale; 2020 Dec; 12(47):24062-24069. PubMed ID: 33245307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C-N Bond Forming Reaction of Amines.
    Swaminathan S; Rao VG; Bera JK; Chandra M
    Angew Chem Int Ed Engl; 2021 May; 60(22):12532-12538. PubMed ID: 33734534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions.
    Zhang Y; Nelson T; Tretiak S; Guo H; Schatz GC
    ACS Nano; 2018 Aug; 12(8):8415-8422. PubMed ID: 30001116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Construction of Plasmonic Nanostructures for the Utilization of the Plasmon-Excited Electrons and Holes.
    Zhan C; Wang ZY; Zhang XG; Chen XJ; Huang YF; Hu S; Li JF; Wu DY; Moskovits M; Tian ZQ
    J Am Chem Soc; 2019 May; 141(20):8053-8057. PubMed ID: 31070906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect to Direct Charge Transfer Transition in Plasmon-Enabled CO
    Zhang Y; Yan L; Guan M; Chen D; Xu Z; Guo H; Hu S; Zhang S; Liu X; Guo Z; Li S; Meng S
    Adv Sci (Weinh); 2022 Jan; 9(2):e2102978. PubMed ID: 34766740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring plasmonic hot-carrier chemical reactions at the single particle level.
    Simoncelli S; Pensa EL; Brick T; Gargiulo J; Lauri A; Cambiasso J; Li Y; Maier SA; Cortés E
    Faraday Discuss; 2019 May; 214(0):73-87. PubMed ID: 30810127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Surface Redox Chemistry Triggered by Plasmon-Generated Hot Carriers.
    Yin H; Lan JG; Goubert G; Wang YH; Li JF; Zenobi R
    Small; 2019 Nov; 15(47):e1903674. PubMed ID: 31588678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.