These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31192994)

  • 1. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling.
    Li Y; Ning C
    Bioact Mater; 2019 Dec; 4():189-195. PubMed ID: 31192994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Electron Transfer by
    Chugh B; Sheetal ; Singh M; Thakur S; Pani B; Singh AK; Saji VS
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1049-1059. PubMed ID: 35199512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view.
    Ma Y; Zhang Y; Zhang R; Guan F; Hou B; Duan J
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):515-525. PubMed ID: 31807887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers.
    Permeh S; Lau K; Duncan M
    Bioelectrochemistry; 2021 Dec; 142():107922. PubMed ID: 34392136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer.
    Anguita J; Pizarro G; Vargas IT
    Bioelectrochemistry; 2022 Jun; 145():108058. PubMed ID: 35074731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial extracellular electron transfer and its relevance to iron corrosion.
    Kato S
    Microb Biotechnol; 2016 Mar; 9(2):141-8. PubMed ID: 26863985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus.
    Guan F; Liu Z; Dong X; Zhai X; Zhang B; Duan J; Wang N; Gao Y; Yang L; Hou B
    Sci Total Environ; 2021 Sep; 788():147573. PubMed ID: 34034174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa.
    Zhou E; Zhang M; Huang Y; Li H; Wang J; Jiang G; Jiang C; Xu D; Wang Q; Wang F
    Water Res; 2022 Jul; 220():118634. PubMed ID: 35691192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.
    Xu D; Li Y; Gu T
    Bioelectrochemistry; 2016 Aug; 110():52-8. PubMed ID: 27071053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.
    Li H; Xu D; Li Y; Feng H; Liu Z; Li X; Gu T; Yang K
    PLoS One; 2015; 10(8):e0136183. PubMed ID: 26308855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion.
    Tripathi AK; Thakur P; Saxena P; Rauniyar S; Gopalakrishnan V; Singh RN; Gadhamshetty V; Gnimpieba EZ; Jasthi BK; Sani RK
    Front Microbiol; 2021; 12():754140. PubMed ID: 34777309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion.
    Little B; Lee J; Ray R
    Biofouling; 2007; 23(1-2):87-97. PubMed ID: 17453733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment.
    Lv M; Du M; Li Z
    Bioelectrochemistry; 2022 Feb; 143():107951. PubMed ID: 34601262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiologically Influenced Corrosion of Copper and Its Alloys in Anaerobic Aqueous Environments: A Review.
    Amendola R; Acharjee A
    Front Microbiol; 2022; 13():806688. PubMed ID: 35444629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient Level Determines Biofilm Characteristics and Subsequent Impact on Microbial Corrosion and Biocide Effectiveness.
    Salgar-Chaparro SJ; Lepkova K; Pojtanabuntoeng T; Darwin A; Machuca LL
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31980429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced inhibition of HEDP on SRB-mediated corrosion with D-phenylalanine.
    Li H; Kang Z; Zhang K; Gong S; Zhao X; Yan Z; Wang S; Song C
    Environ Res; 2023 Jun; 227():115754. PubMed ID: 36966998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular DNA: A Critical Aspect of Marine Biofilms.
    Tuck B; Salgar-Chaparro SJ; Watkin E; Somers A; Forsyth M; Machuca LL
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35889003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.
    Zhang P; Xu D; Li Y; Yang K; Gu T
    Bioelectrochemistry; 2015 Feb; 101():14-21. PubMed ID: 25023048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-microfouling Activity of
    Heidarian S; Mohammadipanah F; Maghsoudlou A; Dashti Y; Challis GL
    Front Microbiol; 2018; 9():3148. PubMed ID: 30687240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.