BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31193228)

  • 1. Titanium-based nanocomposite materials for arsenic removal from water: A review.
    Ashraf S; Siddiqa A; Shahida S; Qaisar S
    Heliyon; 2019 May; 5(5):e01577. PubMed ID: 31193228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanocomposite adsorbents for abatement of arsenic species from water and wastewater.
    Ahmaruzzaman M
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):82681-82708. PubMed ID: 36219282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspectives on the Development of Filter Media for Point of Use Water Filters: Case Study of Arsenate Removal.
    Chigome S; Andala D; Kabomo M; Mobegi E
    Front Chem; 2022; 10():826440. PubMed ID: 35433630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal.
    Uddin MJ; Jeong YK
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):39888-39912. PubMed ID: 32772289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent developments of magnetic nanoadsorbents for remediation of arsenic from aqueous stream.
    Ahmaruzzaman M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(12):1058-1072. PubMed ID: 36482735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water.
    Andjelkovic I; Jovic B; Jovic M; Markovic M; Stankovic D; Manojlovic D; Roglic G
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):469-76. PubMed ID: 26310708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite.
    Sherlala AIA; Raman AAA; Bello MM; Buthiyappan A
    J Environ Manage; 2019 Sep; 246():547-556. PubMed ID: 31202019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clay based nanocomposites for removal of heavy metals from water: A review.
    Yadav VB; Gadi R; Kalra S
    J Environ Manage; 2019 Feb; 232():803-817. PubMed ID: 30529868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Response Surface Methodology and Desirability Function in the Optimization of Adsorptive Remediation of Arsenic from Acid Mine Drainage Using Magnetic Nanocomposite: Equilibrium Studies and Application to Real Samples.
    Gugushe AS; Nqombolo A; Nomngongo PN
    Molecules; 2019 May; 24(9):. PubMed ID: 31075844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal from water/wastewater using adsorbents--A critical review.
    Mohan D; Pittman CU
    J Hazard Mater; 2007 Apr; 142(1-2):1-53. PubMed ID: 17324507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of arsenic from water using nano adsorbents and challenges: A review.
    Lata S; Samadder SR
    J Environ Manage; 2016 Jan; 166():387-406. PubMed ID: 26546885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal by nanoparticles: a review.
    Habuda-Stanić M; Nujić M
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8094-123. PubMed ID: 25791264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Γ-Al₂O₃-based nanocomposite adsorbents for arsenic(V) removal: assessing performance, toxicity and particle leakage.
    Onnby L; Svensson C; Mbundi L; Busquets R; Cundy A; Kirsebom H
    Sci Total Environ; 2014 Mar; 473-474():207-14. PubMed ID: 24370695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review.
    Wong W; Wong HY; Badruzzaman AB; Goh HH; Zaman M
    Nanotechnology; 2017 Jan; 28(4):042001. PubMed ID: 27997365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials.
    Mondal MK; Garg R
    Environ Sci Pollut Res Int; 2017 May; 24(15):13295-13306. PubMed ID: 28401386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions.
    Beduk F
    Environ Technol; 2016; 37(14):1790-801. PubMed ID: 26831455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of fluoride ion from aqueous solutions by titania-grafted β-cyclodextrin nanocomposite.
    Fallah Z; Isfahani HN; Tajbakhsh M
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3281-3294. PubMed ID: 31838690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium-titanium nanocomposite.
    Mohammadi Nodeh MK; Gabris MA; Rashidi Nodeh H; Esmaeili Bidhendi M
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16864-16874. PubMed ID: 29619640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution.
    Shoukat A; Wahid F; Khan T; Siddique M; Nasreen S; Yang G; Ullah MW; Khan R
    Int J Biol Macromol; 2019 May; 129():965-971. PubMed ID: 30738165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-dispersed TiO
    Deng M; Wu X; Zhu A; Zhang Q; Liu Q
    J Environ Manage; 2019 May; 237():63-74. PubMed ID: 30784867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.