These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31194206)

  • 1. Enhanced photolysis stability of Cu
    Huang CL; Weng WL; Huang YS; Liao CN
    Nanoscale; 2019 Aug; 11(29):13709-13713. PubMed ID: 31194206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties.
    Minguez-Bacho I; Courté M; Fan HJ; Fichou D
    Nanotechnology; 2015 May; 26(18):185401. PubMed ID: 25865464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-grown 3D Cu2O networks for efficient solar water splitting.
    Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D
    Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts.
    Liu SH; Wei YS; Lu JS
    Chemosphere; 2016 Jul; 154():118-123. PubMed ID: 27043377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random networks of core-shell-like Cu-Cu
    Hajimammadov R; Bykov A; Popov A; Juhasz KL; Lorite GS; Mohl M; Kukovecz A; Huuhtanen M; Kordas K
    Sci Rep; 2018 Mar; 8(1):4708. PubMed ID: 29549337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu
    Derikvandi H; Vosough M; Nezamzadeh-Ejhieh A
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27582-27597. PubMed ID: 32394251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics.
    Zhang B; Li W; Jiu J; Yang Y; Jing J; Suganuma K; Li CF
    Inorg Chem; 2019 Mar; 58(5):3374-3381. PubMed ID: 30789711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Visible-Light Photocatalytic H
    Liu B; Ning L; Zhang C; Zheng H; Liu SF; Yang H
    Inorg Chem; 2018 Jul; 57(13):8019-8027. PubMed ID: 29927594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).
    Chirizzi D; Guascito MR; Filippo E; Tepore A
    Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide.
    Shang L; Lv X; Shen H; Shao Z; Zheng G
    J Colloid Interface Sci; 2019 Sep; 552():426-431. PubMed ID: 31151020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core-shell nanowires.
    Weng WL; Hsu CY; Lee JS; Fan HH; Liao CN
    Nanoscale; 2018 May; 10(21):9862-9866. PubMed ID: 29790560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating.
    Mardiansyah D; Badloe T; Triyana K; Mehmood MQ; Raeis-Hosseini N; Lee Y; Sabarman H; Kim K; Rho J
    Sci Rep; 2018 Jul; 8(1):10639. PubMed ID: 30006611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly synthesis of Cu2O-on-Cu nanowires with visible-light-enhanced photocatalytic activity.
    Chen H; Tu T; Wen M; Wu Q
    Dalton Trans; 2015 Sep; 44(35):15645-52. PubMed ID: 26247173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ chemical vapor deposition to fabricate Cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance.
    Fu Y; Li Q; Liu J; Jiao Y; Hu S; Wang H; Xu S; Jiang B
    J Colloid Interface Sci; 2020 Jun; 570():143-152. PubMed ID: 32146241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu/Cu
    Chen YJ; Li MH; Huang JC; Chen P
    Sci Rep; 2018 May; 8(1):7646. PubMed ID: 29769568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving water splitting performance of Cu2O through a synergistic "two-way transfer" process of Cu and graphene.
    Zhang D; Wei D; Cui Z; Wang S; Yang S; Cao M; Hu C
    Phys Chem Chem Phys; 2014 Dec; 16(46):25531-6. PubMed ID: 25350462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation.
    Niu J; Dai Y; Yin L; Shang J; Crittenden JC
    Phys Chem Chem Phys; 2015 Jul; 17(26):17421-8. PubMed ID: 26076905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of CO and NO
    Kim JH; Lee JH; Kim JY; Mirzaei A; Kim HW; Kim SS
    J Hazard Mater; 2019 Aug; 376():68-82. PubMed ID: 31125941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environment-Modulated Crystallization of Cu
    Harilal M; G Krishnan S; Pal B; Reddy MV; Ab Rahim MH; Yusoff MM; Jose R
    Langmuir; 2018 Feb; 34(5):1873-1882. PubMed ID: 29345940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.