BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31194264)

  • 1. Temperature Depth Profiles Induced in Human Skin In Vivo Using Pulsed 975 nm Irradiation.
    Milanic M; Cenian A; Verdel N; Cenian W; Stergar J; Majaron B
    Lasers Surg Med; 2019 Nov; 51(9):774-784. PubMed ID: 31194264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser.
    Milanič M; Majaron B
    Lasers Surg Med; 2013 Jan; 45(1):8-14. PubMed ID: 23225065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Study of Hyper-Thermic Laser Lipolysis With 1,064 nm Nd:YAG Laser in Human Subjects.
    Milanic M; Muc BT; Lukac N; Lukac M
    Lasers Surg Med; 2019 Dec; 51(10):897-909. PubMed ID: 31228285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Comparison of Thermal Effects of a 1940-nm Tm:fiber Laser and 980-nm Diode Laser on Cortical Tissue: Stereotaxic Laser Brain Surgery.
    Tunc B; Gulsoy M
    Lasers Surg Med; 2020 Mar; 52(3):235-246. PubMed ID: 31592541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of light to the skin through ablated conduits.
    Tanghetti E; Mirkov M; Sierra RA
    Lasers Surg Med; 2017 Jan; 49(1):69-77. PubMed ID: 27197620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and numerical assessment of hyperthermic laser lipolysis with 1,064 nm Nd:YAG laser on a porcine fatty tissue model.
    Milanic M; Muc BT; Jezersek M; Lukac M
    Lasers Surg Med; 2018 Feb; 50(2):125-136. PubMed ID: 28940535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1,064 nm in treatment of facial port-wine stain.
    Al-Dhalimi MA; Al-Janabi MH
    Lasers Surg Med; 2016 Nov; 48(9):852-858. PubMed ID: 27669109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed Photothermal Radiometric Depth Profiling of Bruises by 532 nm and 1064 nm Lasers.
    Marin A; Hren R; Milanič M
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination 532-nm and 1064-nm lasers for noninvasive skin rejuvenation and toning.
    Lee MW
    Arch Dermatol; 2003 Oct; 139(10):1265-76. PubMed ID: 14568830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of epidermal/dermal damage between the long-pulsed 1064 nm Nd:YAG and 755 nm alexandrite lasers under relatively high fluence conditions: quantitative and histological assessments.
    Lee JH; Park SR; Jo JH; Park SY; Seo YK; Kim SM
    Photomed Laser Surg; 2014 Jul; 32(7):386-93. PubMed ID: 24992273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of microvascular responses to visible and near-infrared lasers.
    Li D; Farshidi D; Wang GX; He YL; Kelly KM; Wu WJ; Chen B; Ying ZX
    Lasers Surg Med; 2014 Aug; 46(6):479-87. PubMed ID: 24974953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study.
    Alshami MA
    J Cosmet Dermatol; 2013 Sep; 12(3):170-8. PubMed ID: 23992158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the Outcomes of Focused Heating of the Skin by a Long-Pulsed 1064 nm Laser with an Integrated Scanner, Infrared Thermal Guidance, and Optical Coherence Tomography.
    Mehrabi JN; Kelly KM; Holmes JD; Zachary CB
    Lasers Surg Med; 2021 Aug; 53(6):806-814. PubMed ID: 33450784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermal Effects of Defocused Initiated Versus Noninitiated Diode Implant Irradiation.
    Romanos GE; Motwani SV; Montanaro NJ; Javed F; Delgado-Ruiz R
    Photobiomodul Photomed Laser Surg; 2019 Jun; 37(6):356-361. PubMed ID: 31188089
    [No Abstract]   [Full Text] [Related]  

  • 17. Experimental and numerical investigation on the transient vascular thermal response to multi-pulse Nd:YAG laser.
    Li D; Li R; Jia H; Chen B; Wu W; Ying Z
    Lasers Surg Med; 2017 Nov; 49(9):852-865. PubMed ID: 28598555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional, nonablative Q-switched 1,064-nm neodymium YAG laser to rejuvenate photoaged skin: a pilot case series.
    Luebberding S; Alexiades-Armenakas MR
    J Drugs Dermatol; 2012 Nov; 11(11):1300-4. PubMed ID: 23135078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry.
    Choi B; Majaron B; Nelson JS
    J Biomed Opt; 2004; 9(2):299-307. PubMed ID: 15065895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lasers for facial rejuvenation: a review.
    Papadavid E; Katsambas A
    Int J Dermatol; 2003 Jun; 42(6):480-7. PubMed ID: 12786881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.