These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31194292)

  • 1. Air-core fiber or photonic-crystal rod, which is more suitable for energetic femtosecond pulse generation and three-photon microscopy at the 1700-nm window?
    Gan M; He C; Liu H; Zhuang Z; Qiu P; Wang K
    J Biophotonics; 2019 Oct; 12(10):e201900069. PubMed ID: 31194292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-phase-modulated femtosecond laser source at 1603 nm and its application to deep-brain 3-photon microscopy in vivo.
    Chen X; Cheng H; Deng X; Tong S; Li J; Qiu P; Wang K
    J Biophotonics; 2021 Mar; 14(3):e202000349. PubMed ID: 33179837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy.
    Wang K; Qiu P
    J Biomed Opt; 2015 May; 20(5):55003. PubMed ID: 25950644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber.
    Li B; Wang M; Charan K; Li MJ; Xu C
    Opt Express; 2018 Jul; 26(15):19637-19647. PubMed ID: 30114134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.
    Liu BW; Hu ML; Fang XH; Li YF; Chai L; Wang CY; Tong W; Luo J; Voronin AA; Zheltikov AM
    Opt Express; 2008 Sep; 16(19):14987-96. PubMed ID: 18795035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber.
    González-Baquedano N; Torres-Gómez I; Arzate N; Ferrando A; Ceballos-Herrera DE
    Opt Express; 2013 Apr; 21(7):9132-43. PubMed ID: 23572002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling.
    Gèrôme F; Dupriez P; Clowes J; Knight JC; Wadsworth WJ
    Opt Express; 2008 Feb; 16(4):2381-6. PubMed ID: 18542316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond tunable solitons up to 4.8  µm using soliton self-frequency shift in an InF
    Gauthier JC; Olivier M; Paradis P; Dumas MF; Bernier M; Vallée R
    Sci Rep; 2022 Sep; 12(1):15898. PubMed ID: 36151236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber.
    van Howe J; Lee JH; Zhou S; Wise F; Xu C; Ramachandran S; Ghalmi S; Yan MF
    Opt Lett; 2007 Feb; 32(4):340-2. PubMed ID: 17356646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy.
    Wang K; Liu TM; Wu J; Horton NG; Lin CP; Xu C
    Biomed Opt Express; 2012 Sep; 3(9):1972-7. PubMed ID: 23024893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber.
    Abedin KS; Kubota F
    Opt Lett; 2003 Oct; 28(19):1760-2. PubMed ID: 14514092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.
    Liu L; Meng X; Yin F; Liao M; Zhao D; Qin G; Ohishi Y; Qin W
    Opt Lett; 2013 Aug; 38(15):2851-4. PubMed ID: 23903161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadly wavelength- and pulse width-tunable high-repetition rate light pulses from soliton self-frequency shifting photonic crystal fiber integrated with a frequency doubling crystal.
    Lanin AA; Fedotov AB; Zheltikov AM
    Opt Lett; 2012 Sep; 37(17):3618-20. PubMed ID: 22940968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3 GHz, watt-level femtosecond Raman soliton source.
    Lim J; Chen HW; Xu S; Yang Z; Chang G; Kärtner FX
    Opt Lett; 2014 Apr; 39(7):2060-3. PubMed ID: 24686674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons.
    Saint-Jalm S; Andresen ER; Ferrand P; Bendahmane A; Mussot A; Vanvincq O; Bouwmans G; Kudlinski A; Rigneault H
    J Biomed Opt; 2014 Aug; 19(8):086021. PubMed ID: 25157612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers.
    Gorbach AV; Skryabin DV
    Opt Express; 2008 Mar; 16(7):4858-65. PubMed ID: 18542584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source.
    Wang K; Xu C
    Opt Lett; 2011 Mar; 36(6):942-4. PubMed ID: 21403736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700  nm window.
    Cheng H; Tong S; Deng X; Liu H; Du Y; He C; Qiu P; Wang K
    Opt Lett; 2019 Sep; 44(17):4432-4435. PubMed ID: 31465421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers.
    Luan F; Knight J; Russell P; Campbell S; Xiao D; Reid D; Mangan B; Williams D; Roberts P
    Opt Express; 2004 Mar; 12(5):835-40. PubMed ID: 19474893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths.
    Wang W; Yang H; Tang P; Zhao C; Gao J
    Opt Express; 2013 May; 21(9):11215-26. PubMed ID: 23669979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.