These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31194538)

  • 1. Accelerating GW-Based Energy Level Alignment Calculations for Molecule-Metal Interfaces Using a Substrate Screening Approach.
    Liu ZF; da Jornada FH; Louie SG; Neaton JB
    J Chem Theory Comput; 2019 Jul; 15(7):4218-4227. PubMed ID: 31194538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric embedding GW for weakly coupled molecule-metal interfaces.
    Liu ZF
    J Chem Phys; 2020 Feb; 152(5):054103. PubMed ID: 32035462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.
    Egger DA; Liu ZF; Neaton JB; Kronik L
    Nano Lett; 2015 Apr; 15(4):2448-55. PubMed ID: 25741626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling energy level alignment at organic interfaces and density functional theory.
    Flores F; Ortega J; Vázquez H
    Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Substrate Screening
    Frimpong J; Liu ZF
    J Phys Chem Lett; 2024 Feb; 15(8):2133-2141. PubMed ID: 38364077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge Transfer Screening and Energy Level Alignment at Complex Organic-Inorganic Interfaces: A Tractable
    Cheng NLQ; Xuan F; Spataru CD; Quek SY
    J Phys Chem Lett; 2021 Sep; 12(36):8841-8846. PubMed ID: 34492190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating
    Li D; Liu ZF; Yang L
    J Chem Theory Comput; 2023 Dec; 19(24):9435-9444. PubMed ID: 38059814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiparticle Levels at Large Interface Systems from Many-Body Perturbation Theory: The XAF-GW Method.
    Xuan F; Chen Y; Quek SY
    J Chem Theory Comput; 2019 Jun; 15(6):3824-3835. PubMed ID: 31084031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiparticle electronic structure of phthalocyanine:TMD interfaces from first-principles GW.
    Adeniran O; Liu ZF
    J Chem Phys; 2021 Dec; 155(21):214702. PubMed ID: 34879665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertex Corrections to the Polarizability Do Not Improve the GW Approximation for the Ionization Potential of Molecules.
    Lewis AM; Berkelbach TC
    J Chem Theory Comput; 2019 May; 15(5):2925-2932. PubMed ID: 30933508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Energetics of Dye-Sensitized NiO Interfaces in Water from Ab Initio MD and Large-Scale GW Calculations.
    Segalina A; Lebègue S; Rocca D; Piccinin S; Pastore M
    J Chem Theory Comput; 2021 Aug; 17(8):5225-5238. PubMed ID: 34324810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.
    Yu M; Doak P; Tamblyn I; Neaton JB
    J Phys Chem Lett; 2013 May; 4(10):1701-6. PubMed ID: 26282981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).
    Li Y; Lu D; Galli G
    J Chem Theory Comput; 2009 Apr; 5(4):881-6. PubMed ID: 26609596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO
    Byun YM; Öğüt S
    J Chem Phys; 2019 Oct; 151(13):134305. PubMed ID: 31594362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interface energetics of self-assembled monolayers on metals.
    Heimel G; Romaner L; Zojer E; Bredas JL
    Acc Chem Res; 2008 Jun; 41(6):721-9. PubMed ID: 18507404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renormalization of molecular electronic levels at metal-molecule interfaces.
    Neaton JB; Hybertsen MS; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216405. PubMed ID: 17155759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renormalization of molecular quasiparticle levels at metal-molecule interfaces: trends across binding regimes.
    Thygesen KS; Rubio A
    Phys Rev Lett; 2009 Jan; 102(4):046802. PubMed ID: 19257455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.
    Umari P; Fabris S
    J Chem Phys; 2012 May; 136(17):174310. PubMed ID: 22583233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.