BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31194651)

  • 1. Whole Exome Sequencing Identifies Putative Predictors of Recurrent Prostate Cancer with High Accuracy.
    Liu J; Mao R; Ren G; Liu X; Zhang Y; Wang J; Wang Y; Li M; Qiu Q; Wang L; Liu G; Jin S; Ma L; Ma Y; Zhao N; Yan J; Zhang H; Lin B
    OMICS; 2019 Aug; 23(8):380-388. PubMed ID: 31194651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1.
    Prensner JR; Zhao S; Erho N; Schipper M; Iyer MK; Dhanasekaran SM; Magi-Galluzzi C; Mehra R; Sahu A; Siddiqui J; Davicioni E; Den RB; Dicker AP; Karnes RJ; Wei JT; Klein EA; Jenkins RB; Chinnaiyan AM; Feng FY
    Lancet Oncol; 2014 Dec; 15(13):1469-1480. PubMed ID: 25456366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the Long Non-coding RNA SChLAP1 Independently Predicts Lethal Prostate Cancer.
    Mehra R; Udager AM; Ahearn TU; Cao X; Feng FY; Loda M; Petimar JS; Kantoff P; Mucci LA; Chinnaiyan AM
    Eur Urol; 2016 Oct; 70(4):549-552. PubMed ID: 26724257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-1, a Potential Predictive Biomarker for Recurrence in Prostate Cancer After Radical Prostatectomy.
    Wei W; Leng J; Shao H; Wang W
    Am J Med Sci; 2017 Apr; 353(4):315-319. PubMed ID: 28317618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity.
    Kidd SG; Carm KT; Bogaard M; Olsen LG; Bakken AC; Løvf M; Lothe RA; Axcrona K; Axcrona U; Skotheim RI
    Neoplasia; 2021 Jun; 23(6):634-641. PubMed ID: 34107378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide detection of allelic genetic variation to predict biochemical recurrence after radical prostatectomy among prostate cancer patients using an exome SNP chip.
    Oh JJ; Park S; Lee SE; Hong SK; Lee S; Lee HM; Lee JK; Ho JN; Yoon S; Byun SS
    J Cancer Res Clin Oncol; 2015 Aug; 141(8):1493-501. PubMed ID: 25764380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and isolation of disseminated tumor cells in bone marrow of patients with clinically localized prostate cancer.
    Cackowski FC; Wang Y; Decker JT; Sifuentes C; Weindorf S; Jung Y; Wang Y; Decker AM; Yumoto K; Szerlip N; Buttitta L; Pienta KJ; Morgan TM; Taichman RS
    Prostate; 2019 Oct; 79(14):1715-1727. PubMed ID: 31449673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer.
    Schaid DJ; McDonnell SK; FitzGerald LM; DeRycke L; Fogarty Z; Giles GG; MacInnis RJ; Southey MC; Nguyen-Dumont T; Cancel-Tassin G; Cussenot O; Whittemore AS; Sieh W; Ioannidis NM; Hsieh CL; Stanford JL; Schleutker J; Cropp CD; Carpten J; Hoegel J; Eeles R; Kote-Jarai Z; Ackerman MJ; Klein CJ; Mandal D; Cooney KA; Bailey-Wilson JE; Helfand B; Catalona WJ; Wiklund F; Riska S; Bahetti S; Larson MC; Cannon Albright L; Teerlink C; Xu J; Isaacs W; Ostrander EA; Thibodeau SN
    Eur Urol; 2021 Mar; 79(3):353-361. PubMed ID: 32800727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer.
    Lo Iacono M; Buttigliero C; Monica V; Bollito E; Garrou D; Cappia S; Rapa I; Vignani F; Bertaglia V; Fiori C; Papotti M; Volante M; Scagliotti GV; Porpiglia F; Tucci M
    Oncotarget; 2016 Mar; 7(12):14394-404. PubMed ID: 26887047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of the Tumor Mutational Burden as a Prognostic Biomarker and Related Hub Gene Identification in Prostate Cancer.
    Wang L; Yao Y; Xu C; Wang X; Wu D; Hong Z
    Technol Cancer Res Treat; 2021; 20():15330338211052154. PubMed ID: 34806485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
    Beltran H; Yelensky R; Frampton GM; Park K; Downing SR; MacDonald TY; Jarosz M; Lipson D; Tagawa ST; Nanus DM; Stephens PJ; Mosquera JM; Cronin MT; Rubin MA
    Eur Urol; 2013 May; 63(5):920-6. PubMed ID: 22981675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear Shape and Architecture in Benign Fields Predict Biochemical Recurrence in Prostate Cancer Patients Following Radical Prostatectomy: Preliminary Findings.
    Lee G; Veltri RW; Zhu G; Ali S; Epstein JI; Madabhushi A
    Eur Urol Focus; 2017 Oct; 3(4-5):457-466. PubMed ID: 28753763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TMEFF2-regulated cell cycle derived gene signature is prognostic of recurrence risk in prostate cancer.
    Georgescu C; Corbin JM; Thibivilliers S; Webb ZD; Zhao YD; Koster J; Fung KM; Asch AS; Wren JD; Ruiz-Echevarría MJ
    BMC Cancer; 2019 May; 19(1):423. PubMed ID: 31060542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urine TMPRSS2: ERG Fusion Transcript as a Biomarker for Prostate Cancer: Literature Review.
    Sanguedolce F; Cormio A; Brunelli M; D'Amuri A; Carrieri G; Bufo P; Cormio L
    Clin Genitourin Cancer; 2016 Apr; 14(2):117-21. PubMed ID: 26774207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic Significance of TMPRSS2-ERG Fusion Gene in Prostate Cancer.
    Kulda V; Topolcan O; Kucera R; Kripnerova M; Srbecka K; Hora M; Hes O; Klecka J; Babuska V; Rousarova M; Benson V; Pesta M
    Anticancer Res; 2016 Sep; 36(9):4787-93. PubMed ID: 27630329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression.
    Kamdar S; Isserlin R; Van der Kwast T; Zlotta AR; Bader GD; Fleshner NE; Bapat B
    Clin Epigenetics; 2019 Mar; 11(1):54. PubMed ID: 30917865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clinicogenetic model to predict lymph node invasion by use of genome-based biomarkers from exome arrays in prostate cancer patients.
    Oh JJ; Park S; Lee SE; Hong SK; Lee S; Lee HM; Lee JK; Ho JN; Yoon S; Byun SS
    Korean J Urol; 2015 Feb; 56(2):109-16. PubMed ID: 25685297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcript levels of androgen receptor variant AR-V1 or AR-V7 do not predict recurrence in patients with prostate cancer at indeterminate risk for progression.
    Zhao H; Coram MA; Nolley R; Reese SW; Young SR; Peehl DM
    J Urol; 2012 Dec; 188(6):2158-64. PubMed ID: 23088973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenomic alterations in localized and advanced prostate cancer.
    Lin PC; Giannopoulou EG; Park K; Mosquera JM; Sboner A; Tewari AK; Garraway LA; Beltran H; Rubin MA; Elemento O
    Neoplasia; 2013 Apr; 15(4):373-83. PubMed ID: 23555183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational bioinformatics for diagnostic and prognostic prediction of prostate cancer in the next-generation sequencing era.
    Chen J; Zhang D; Yan W; Yang D; Shen B
    Biomed Res Int; 2013; 2013():901578. PubMed ID: 23957008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.