BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31194783)

  • 1. Four climate change scenarios for Gypsophila bermejoi G. López (Caryophyllaceae) to address whether bioclimatic and soil suitability will overlap in the future.
    de Luis M; Álvarez-Jiménez J; Martínez Labarga JM; Bartolomé C
    PLoS One; 2019; 14(6):e0218160. PubMed ID: 31194783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors.
    de Luis M; Bartolomé C; García Cardo Ó; Álvarez-Jiménez J
    PLoS One; 2018; 13(1):e0190536. PubMed ID: 29338010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sympatric and allopatric niche shift of endemic Gypsophila (Caryophyllaceae) taxa in the Iberian Peninsula.
    de Luis M; Bartolomé C; García Cardo Ó; Martínez Labarga JM; Álvarez-Jiménez J
    PLoS One; 2018; 13(11):e0206043. PubMed ID: 30403709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using species distribution models to locate the potential cradles of the allopolyploid Gypsophila bermejoi G. López (Caryophyllaceae).
    de Luis M; Álvarez-Jiménez J; Rejos FJ; Bartolomé C
    PLoS One; 2020; 15(5):e0232736. PubMed ID: 32428047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change.
    Wani IA; Khan S; Verma S; Al-Misned FA; Shafik HM; El-Serehy HA
    Sci Rep; 2022 Aug; 12(1):13205. PubMed ID: 35915126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios.
    Adão F; Campos JC; Santos JA; Malheiro AC; Fraga H
    Front Plant Sci; 2023; 14():974020. PubMed ID: 36844079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of climate change on the geographical distribution and niche dynamics of
    Hu J; Feng Y; Zhong H; Liu W; Tian X; Wang Y; Tan T; Hu Z; Liu Y
    PeerJ; 2023; 11():e15741. PubMed ID: 37520262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effects of climate change on the potential distribution of the rangeland species Gymnocarpus decander Forssk (case study: Arid region of southeastern Iran).
    Narouei M; Javadi SA; Khodagholi M; Jafari M; Azizinejad R
    Environ Monit Assess; 2021 Dec; 194(1):33. PubMed ID: 34923594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios.
    Singh L; Kanwar N; Bhatt ID; Nandi SK; Bisht AK
    PLoS One; 2022; 17(6):e0269673. PubMed ID: 35714160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographic shifts in the bioclimatic suitability for
    Portilla Cabrera CV; Selvaraj JJ
    Heliyon; 2020 Jan; 6(1):e03101. PubMed ID: 31909268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of
    Kumari P; Wani IA; Khan S; Verma S; Mushtaq S; Gulnaz A; Paray BA
    Biology (Basel); 2022 Mar; 11(4):. PubMed ID: 35453699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global spatial distribution of Prosopis juliflora - one of the world's worst 100 invasive alien species under changing climate using multiple machine learning models.
    Pasha SV; Reddy CS
    Environ Monit Assess; 2024 Jan; 196(2):196. PubMed ID: 38265744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios.
    Bania JK; Deka JR; Hazarika A; Das AK; Nath AJ; Sileshi GW
    Sci Rep; 2023 Nov; 13(1):20221. PubMed ID: 37980365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the habitat distribution of rubber plantations with topography, soil, land use, and climatic factors.
    Selvalakshmi S; Kalarikkal RK; Yang X
    Environ Monit Assess; 2020 Aug; 192(9):598. PubMed ID: 32840701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi.
    Garrido R; Bacigalupo A; Peña-Gómez F; Bustamante RO; Cattan PE; Gorla DE; Botto-Mahan C
    Parasit Vectors; 2019 Oct; 12(1):478. PubMed ID: 31610815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of climate change on the current and future distribution of threatened species of the genus Lessingianthus (Vernonieae: Asteraceae) from the Brazilian Cerrado.
    Angulo MB; Via DO Pico G; Dematteis M
    An Acad Bras Cienc; 2021; 93(2):e20190796. PubMed ID: 34190841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitat potential modelling and the effect of climate change on the current and future distribution of three Thymus species in Iran using MaxEnt.
    Hosseini N; Ghorbanpour M; Mostafavi H
    Sci Rep; 2024 Feb; 14(1):3641. PubMed ID: 38351276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region.
    Behroozian M; Ejtehadi H; Peterson AT; Memariani F; Mesdaghi M
    PLoS One; 2020; 15(8):e0237527. PubMed ID: 32810170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change.
    Zhang K; Yao L; Meng J; Tao J
    Sci Total Environ; 2018 Sep; 634():1326-1334. PubMed ID: 29710632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change models predict southerly shift of the cat flea (Ctenocephalides felis) distribution in Australia.
    Crkvencic N; Šlapeta J
    Parasit Vectors; 2019 Mar; 12(1):137. PubMed ID: 30902110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.