BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 31194952)

  • 1. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation.
    Russell JF; Shi Y; Hinkle JW; Scott NL; Fan KC; Lyu C; Gregori G; Rosenfeld PJ
    Ophthalmol Retina; 2019 Apr; 3(4):350-361. PubMed ID: 31014688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy.
    Pichi F; Smith SD; Abboud EB; Neri P; Woodstock E; Hay S; Levine E; Baumal CR
    Graefes Arch Clin Exp Ophthalmol; 2020 Sep; 258(9):1901-1909. PubMed ID: 32474692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical Utility of Widefield OCT Angiography to Detect Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy.
    Hamada M; Hirai K; Wakabayashi T; Ishida Y; Fukushima M; Kamei M; Tsuboi K
    Ophthalmol Retina; 2024 May; 8(5):481-489. PubMed ID: 38008219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy.
    Cui Y; Zhu Y; Wang JC; Lu Y; Zeng R; Katz R; Vingopoulos F; Le R; Laíns I; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Br J Ophthalmol; 2021 Apr; 105(4):577-581. PubMed ID: 32591347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor.
    Couturier A; Rey PA; Erginay A; Lavia C; Bonnin S; Dupas B; Gaudric A; Tadayoni R
    Ophthalmology; 2019 Dec; 126(12):1685-1694. PubMed ID: 31383483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography.
    Russell JF; Al-Khersan H; Shi Y; Scott NL; Hinkle JW; Fan KC; Lyu C; Feuer WJ; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2020 May; 213():177-185. PubMed ID: 32006481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of diabetic neovascularisation using single-capture 65°-widefield optical coherence tomography angiography.
    Stino H; Niederleithner M; Iby J; Sedova A; Schlegl T; Steiner I; Sacu S; Drexler W; Schmoll T; Leitgeb R; Schmidt-Erfurth UM; Pollreisz A
    Br J Ophthalmol; 2023 Dec; 108(1):91-97. PubMed ID: 36376062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitreoretinal Interface Slab in OCT Angiography for Detecting Diabetic Retinal Neovascularization.
    Hirano T; Hoshiyama K; Hirabayashi K; Wakabayashi M; Toriyama Y; Tokimitsu M; Murata T
    Ophthalmol Retina; 2020 Jun; 4(6):588-594. PubMed ID: 32107187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WF SS-OCTA for detecting diabetic retinopathy and evaluating the effect of photocoagulation on posterior vitreous detachment.
    Gong Y; Hu L; Wang L; Shao Y; Li X
    Front Endocrinol (Lausanne); 2022; 13():1029066. PubMed ID: 36531502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-field swept-source OCT angiography (23 × 20 mm) for detecting retinal neovascularization in eyes with proliferative diabetic retinopathy.
    Hirano T; Hoshiyama K; Takahashi Y; Murata T
    Graefes Arch Clin Exp Ophthalmol; 2023 Feb; 261(2):339-344. PubMed ID: 36303061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy.
    Khalid H; Schwartz R; Nicholson L; Huemer J; El-Bradey MH; Sim DA; Patel PJ; Balaskas K; Hamilton RD; Keane PA; Rajendram R
    Br J Ophthalmol; 2021 Jan; 105(1):118-123. PubMed ID: 32193221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swept-source optical coherence tomography angiography vitreo-retinal segmentation in proliferative diabetic retinopathy.
    Papayannis A; Tsamis E; Stringa F; Iacono P; Battaglia Parodi M; Stanga PE
    Eur J Ophthalmol; 2021 Jul; 31(4):1925-1932. PubMed ID: 32722940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Coherence Tomography Angiography Findings in Proliferative Diabetic Retinopathy.
    Kilani A; Werner JU; Lang GK; Lang GE
    Ophthalmologica; 2021; 244(3):258-264. PubMed ID: 33902045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield fluorescein angiography for the evaluation of lesions in retinal vein occlusion.
    Siying L; Qiaozhu Z; Xinyao H; Linqi Z; Mingwei Z; Jinfeng Q
    BMC Ophthalmol; 2022 Nov; 22(1):422. PubMed ID: 36344951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of venous loops and association with retinal ischemia in diabetic retinopathy using widefield swept-source OCT angiography.
    Le R; Cui Y; Lu ES; Zhu Y; Garg I; Wang JC; Lu Y; Zeng R; Katz R; Laíns I; Eliott D; Husain D; Kim LA; Miller JB
    Graefes Arch Clin Exp Ophthalmol; 2023 Jul; 261(7):1861-1870. PubMed ID: 36715770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal Angiographic Evidence That Intraretinal Microvascular Abnormalities Can Evolve into Neovascularization.
    Russell JF; Shi Y; Scott NL; Gregori G; Rosenfeld PJ
    Ophthalmol Retina; 2020 Dec; 4(12):1146-1150. PubMed ID: 32544625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widefield Swept-Source Optical Coherence Tomography Angiography of Proliferative Diabetic Retinopathy.
    Motulsky EH; Liu G; Shi Y; Zheng F; Flynn HW; Gregori G; Rosenfeld PJ
    Ophthalmic Surg Lasers Imaging Retina; 2019 Aug; 50(8):474-484. PubMed ID: 31415693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility and Clinical Utility of Wide-Field Optical Coherence Tomography Angiography Compared to Ultrawide-Field Fluorescein Angiography in Patients with Diabetic Retinopathy.
    Bajka A; Bacci T; Wiest MRJ; Brinkmann M; Hamann T; Toro M; Zweifel SA
    Klin Monbl Augenheilkd; 2023 Apr; 240(4):490-495. PubMed ID: 37164407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison Between Graders in Detection of Diabetic Neovascularization With Swept Source Optical Coherence Tomography Angiography and Fluorescein Angiography.
    Al-Khersan H; Russell JF; Lazzarini TA; Scott NL; Hinkle JW; Patel NA; Yannuzzi NA; Fowler BJ; Hussain RM; Barikian A; Sridhar J; Russell SR; Haddock LJ; Smiddy WE; Hariprasad SM; Shi Y; Wang L; Feuer W; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2021 Apr; 224():292-300. PubMed ID: 33309812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.