These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31195130)

  • 1. Do interactions between protein and phospholipids influence the release behavior from lipid-based exenatide depot systems?
    Breitsamer M; Stulz A; Heerklotz HH; Winter G
    Eur J Pharm Biopharm; 2019 Sep; 142():61-69. PubMed ID: 31195130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo sustained release of exenatide from vesicular phospholipid gels for type II diabetes.
    Zhang Y; Zhong Y; Hu M; Xiang N; Fu Y; Gong T; Zhang Z
    Drug Dev Ind Pharm; 2016; 42(7):1042-9. PubMed ID: 26558908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicular phospholipid gels as drug delivery systems for small molecular weight drugs, peptides and proteins: State of the art review.
    Breitsamer M; Winter G
    Int J Pharm; 2019 Feb; 557():1-8. PubMed ID: 30572079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic/Anionic Polyelectrolyte (PLL/PGA) Coated Vesicular Phospholipid Gels (VPGs) Loaded with Cytarabine for Sustained Release and Anti-glioma Effects.
    Qi N; Zhang Y; Tang X; Li A
    Drug Des Devel Ther; 2020; 14():1825-1836. PubMed ID: 32494124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular phospholipid gel-based depot formulations for pharmaceutical proteins: development and in vitro evaluation.
    Tian W; Schulze S; Brandl M; Winter G
    J Control Release; 2010 Mar; 142(3):319-25. PubMed ID: 19925833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicular phospholipid gels using low concentrations of phospholipids for the sustained release of thymopentin: pharmacokinetics and pharmacodynamics.
    Zhong Y; Chen L; Zhang Y; Li W; Sun X; Gong T; Zhang Z
    Pharmazie; 2013 Oct; 68(10):811-5. PubMed ID: 24273885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides.
    Cox E; Michalak A; Pagentine S; Seaton P; Pokorny A
    Biochim Biophys Acta; 2014 Sep; 1838(9):2198-204. PubMed ID: 24780374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and Secondary Binding of Exenatide to Liposomes.
    Stulz A; Breitsamer M; Winter G; Heerklotz H
    Biophys J; 2020 Feb; 118(3):600-611. PubMed ID: 31972156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topology and lipid selectivity of pulmonary surfactant protein SP-B in membranes: Answers from fluorescence.
    Cabré EJ; Loura LM; Fedorov A; Perez-Gil J; Prieto M
    Biochim Biophys Acta; 2012 Jul; 1818(7):1717-25. PubMed ID: 22465066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B
    Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion.
    Hirst DJ; Lee TH; Kulkarni K; Wilce JA; Aguilar MI
    Biochim Biophys Acta; 2016 Aug; 1858(8):1841-9. PubMed ID: 27163492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.
    Michanek A; Kristen N; Höök F; Nylander T; Sparr E
    Biochim Biophys Acta; 2010 Apr; 1798(4):829-38. PubMed ID: 20036213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.