These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 31195229)
21. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites. Kim J; Hyun S Chemosphere; 2015 Sep; 134():150-8. PubMed ID: 25935604 [TBL] [Abstract][Full Text] [Related]
22. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sun Z; Xie X; Wang P; Hu Y; Cheng H Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905 [TBL] [Abstract][Full Text] [Related]
23. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage]. Xu C; Xia BC; Wu HN; Lin XF; Qiu RL Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of chemical parameters and ecotoxicity of a soil developed on gossan following application of polyacrylates and growth of Spergularia purpurea. Santos ES; Abreu MM; de Varennes A; Macías F; Leitão S; Cerejeira MJ Sci Total Environ; 2013 Sep; 461-462():360-70. PubMed ID: 23738988 [TBL] [Abstract][Full Text] [Related]
25. Assessing the quality of potentially reclaimed mine soils: Environmental implications for the construction of a nearby water reservoir. Cánovas CR; Caro-Moreno D; Jiménez-Cantizano FA; Macías F; Pérez-López R Chemosphere; 2019 Feb; 216():19-30. PubMed ID: 30359913 [TBL] [Abstract][Full Text] [Related]
26. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Valerio ME; García JF; Peinado FM Sci Total Environ; 2007 May; 378(1-2):63-6. PubMed ID: 17316769 [TBL] [Abstract][Full Text] [Related]
27. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland. O'Neill A; Phillips DH; Bowen J; Sen Gupta B Sci Total Environ; 2015 Apr; 512-513():261-272. PubMed ID: 25634731 [TBL] [Abstract][Full Text] [Related]
28. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Shen ZJ; Xu C; Chen YS; Zhang Z Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313 [TBL] [Abstract][Full Text] [Related]
29. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
30. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W>Sn mine (NE Portugal). Antunes IM; Gomes ME; Neiva AM; Carvalho PC; Santos AC Ecotoxicol Environ Saf; 2016 Nov; 133():135-45. PubMed ID: 27448230 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic. García-Carmona M; Romero-Freire A; Sierra Aragón M; Martínez Garzón FJ; Martín Peinado FJ J Environ Manage; 2017 Apr; 191():228-236. PubMed ID: 28110163 [TBL] [Abstract][Full Text] [Related]
32. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
33. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
34. Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study. Masood N; Farooqi A; Zafar MI Environ Monit Assess; 2019 Jan; 191(2):95. PubMed ID: 30673908 [TBL] [Abstract][Full Text] [Related]
35. Assessment of the Pollutants in Soils and Surface Waters Around Gümüşköy Silver Mine (Kütahya, Turkey). Arslan Ş; Çelik M Bull Environ Contam Toxicol; 2015 Oct; 95(4):499-506. PubMed ID: 26210826 [TBL] [Abstract][Full Text] [Related]
36. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Diami SM; Kusin FM; Madzin Z Environ Sci Pollut Res Int; 2016 Oct; 23(20):21086-21097. PubMed ID: 27491419 [TBL] [Abstract][Full Text] [Related]
37. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils - Findings from the field and greenhouse studies. Dradrach A; Karczewska A; Szopka K Chemosphere; 2020 Jun; 248():126045. PubMed ID: 32050316 [TBL] [Abstract][Full Text] [Related]
38. Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Ávila PF; Ferreira da Silva E; Candeias C Environ Geochem Health; 2017 Jun; 39(3):565-589. PubMed ID: 27222160 [TBL] [Abstract][Full Text] [Related]
39. Enrichment of trace elements in the clay size fraction of mining soils. Gomes P; Valente T; Braga MA; Grande JA; de la Torre ML Environ Sci Pollut Res Int; 2016 Apr; 23(7):6039-45. PubMed ID: 25712883 [TBL] [Abstract][Full Text] [Related]
40. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake. Kader M; Lamb DT; Wang L; Megharaj M; Naidu R Chemosphere; 2017 Nov; 187():357-367. PubMed ID: 28863290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]