These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31195331)

  • 1. Developing surrogate indicators for predicting suppression of halophenols formation potential and abatement of estrogenic activity during ozonation of water and wastewater.
    Huang Y; Cheng S; Wu YP; Wu J; Li Y; Huo ZL; Wu JC; Xie XC; Korshin GV; Li AM; Li WT
    Water Res; 2019 Sep; 161():152-160. PubMed ID: 31195331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying UV absorbance and fluorescence indices to estimate inactivation of bacteria and formation of bromate during ozonation of water and wastewater effluent.
    Wu J; Cheng S; Cai MH; Wu YP; Li Y; Wu JC; Li AM; Li WT
    Water Res; 2018 Nov; 145():354-364. PubMed ID: 30172218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of UV absorbance and fluorescence indicators to assess the formation of biodegradable dissolved organic carbon and bromate during ozonation.
    Li WT; Cao MJ; Young T; Ruffino B; Dodd M; Li AM; Korshin G
    Water Res; 2017 Mar; 111():154-162. PubMed ID: 28068536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.
    Chon K; Salhi E; von Gunten U
    Water Res; 2015 Sep; 81():388-97. PubMed ID: 26140990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abatement technology of endocrine-disrupting chemicals (EDCs) by means of enhanced coagulation and ozonation for wastewater reuse.
    Huang Y; Chen Q; Wang Z; Yan H; Chen C; Yan D; Ji X
    Chemosphere; 2021 Dec; 285():131515. PubMed ID: 34265705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of halophenol formation in seawater during chlorination using pre-ozonation treatment.
    Ding N; Sun Y; Ye T; Yang Z; Qi F
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28050-28060. PubMed ID: 30066078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the influence of pre-ozonation on the formation of disinfection byproducts and cytotoxicity during post-chlorination of natural organic matter: UV absorbance and electron-donating-moiety of molecular weight fractions.
    Wang WL; Lee MY; Du Y; Zhou TH; Yang ZW; Wu QY; Hu HY
    Environ Int; 2021 Dec; 157():106793. PubMed ID: 34332302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.
    Song Y; Breider F; Ma J; von Gunten U
    Water Res; 2017 Oct; 122():246-257. PubMed ID: 28623834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products.
    Bourgin M; Beck B; Boehler M; Borowska E; Fleiner J; Salhi E; Teichler R; von Gunten U; Siegrist H; McArdell CS
    Water Res; 2018 Feb; 129():486-498. PubMed ID: 29190578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities.
    Önnby L; Salhi E; McKay G; Rosario-Ortiz FL; von Gunten U
    Water Res; 2018 Nov; 144():64-75. PubMed ID: 30014980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer.
    Walpen N; Houska J; Salhi E; Sander M; von Gunten U
    Water Res; 2020 Oct; 185():116235. PubMed ID: 32823195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.
    Mao Y; Guo D; Yao W; Wang X; Yang H; Xie YF; Komarneni S; Yu G; Wang Y
    Water Res; 2018 Mar; 130():322-332. PubMed ID: 29247948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Enhanced Ozone-Biologically Active Filtration Treatment for the Removal of 1,4-Dioxane and Disinfection Byproduct Precursors from Wastewater Effluent.
    Vatankhah H; Szczuka A; Mitch WA; Almaraz N; Brannum J; Bellona C
    Environ Sci Technol; 2019 Mar; 53(5):2720-2730. PubMed ID: 30698962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters.
    Rougé V; von Gunten U; Allard S
    Water Res; 2020 Dec; 187():116418. PubMed ID: 33011567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tradeoff between micropollutant abatement and bromate formation during ozonation of concentrates from nanofiltration and reverse osmosis processes.
    Wünsch R; Hettich T; Prahtel M; Thomann M; Wintgens T; von Gunten U
    Water Res; 2022 Aug; 221():118785. PubMed ID: 35949072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of carbonyl compounds during ozonation of lake water and wastewater: Development of a non-target screening method and quantification of target compounds.
    Manasfi T; Houska J; Gebhardt I; von Gunten U
    Water Res; 2023 Jun; 237():119751. PubMed ID: 37141690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of ozonation and O
    Lee W; Choi S; Kim H; Lee W; Lee M; Son H; Lee C; Cho M; Lee Y
    J Hazard Mater; 2023 Jul; 454():131436. PubMed ID: 37146328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O
    Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of spectroscopic indicators for the monitoring of bromate generation in ozonated wastewater containing variable concentrations of bromide.
    Ruffino B; Korshin GV; Zanetti M
    Water Res; 2020 Sep; 182():116009. PubMed ID: 32562961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O
    Yao W; Ur Rehman SW; Wang H; Yang H; Yu G; Wang Y
    Water Res; 2018 Jul; 138():106-117. PubMed ID: 29574198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.