These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31195372)

  • 1. Interstitial clustering in metallic systems as a source for the formation of the icosahedral matrix and defects in the glassy state.
    Konchakov RA; Makarov AS; Kobelev NP; Glezer AM; Wilde G; Khonik VA
    J Phys Condens Matter; 2019 Sep; 31(38):385703. PubMed ID: 31195372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of interstitial-like defects in a computer model of glassy aluminum.
    Goncharova EV; Konchakov RA; Makarov AS; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2017 Aug; 29(30):305701. PubMed ID: 28556782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature.
    Safonova EV; Mitrofanov YP; Konchakov RA; Yu Vinogradov A; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2016 Jun; 28(21):215401. PubMed ID: 27143564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the thermodynamic potentials of metallic glasses and their relation to the defect structure.
    Makarov AS; Afonin GV; Qiao JC; Glezer AM; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2021 Aug; 33(43):. PubMed ID: 34325414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses.
    Khonik SV; Granato AV; Joncich DM; Pompe A; Khonik VA
    Phys Rev Lett; 2008 Feb; 100(6):065501. PubMed ID: 18352488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple kinetic parameter indicating the origin of the relaxations induced by point(-like) defects in metallic crystals and glasses.
    Makarov AS; Konchakov RA; Mitrofanov YP; Kretova MA; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2020 Nov; 32(49):495701. PubMed ID: 32914756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt.
    Wu ZW; Kob W; Wang WH; Xu L
    Nat Commun; 2018 Dec; 9(1):5334. PubMed ID: 30559382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Glass Formation to Icosahedral Ordering by Curving Three-Dimensional Space.
    Turci F; Tarjus G; Royall CP
    Phys Rev Lett; 2017 May; 118(21):215501. PubMed ID: 28598643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverted core-shell potential energy landscape of icosahedral clusters in deeply undercooled metallic liquids and glasses and its effect on the glass forming ability of bcc and fcc metals.
    Xu D; Wang Z; Chang TY; Chen F
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32619208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal rejuvenation in metallic glasses.
    Saida J; Yamada R; Wakeda M; Ogata S
    Sci Technol Adv Mater; 2017; 18(1):152-162. PubMed ID: 28458739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity.
    Mitrofanov YP; Wang DP; Makarov AS; Wang WH; Khonik VA
    Sci Rep; 2016 Mar; 6():23026. PubMed ID: 26975587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of spatial dimension on structural ordering in metallic glass.
    Hu YC; Tanaka H; Wang WH
    Phys Rev E; 2017 Aug; 96(2-1):022613. PubMed ID: 28950459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden topological order and its correlation with glass-forming ability in metallic glasses.
    Wu ZW; Li MZ; Wang WH; Liu KX
    Nat Commun; 2015 Jan; 6():6035. PubMed ID: 25580857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooling rate dependence of simulated Cu64.5Zr35.5 metallic glass structure.
    Ryltsev RE; Klumov BA; Chtchelkatchev NM; Shunyaev KY
    J Chem Phys; 2016 Jul; 145(3):034506. PubMed ID: 27448895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow units as dynamic defects in metallic glassy materials.
    Wang Z; Wang WH
    Natl Sci Rev; 2019 Mar; 6(2):304-323. PubMed ID: 34691871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.
    Wang Q; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 Jun; 17(22):14879-89. PubMed ID: 25981154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardening of shear band in metallic glass.
    Wang JG; Hu YC; Guan PF; Song KK; Wang L; Wang G; Pan Y; Sarac B; Eckert J
    Sci Rep; 2017 Aug; 7(1):7076. PubMed ID: 28765652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.
    An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD
    J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase.
    Elenius M; Oppelstrup T; Dzugutov M
    J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of Al-Mg-Zn Interatomic Potential and the Prediction of Favored Glass Formation Compositions and Associated Driving Forces.
    Cai B; Li J; Lai W; Liu J; Liu B
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.