These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 31195642)

  • 21. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
    Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X
    Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine.
    Foyt DA; Norman MDA; Yu TTL; Gentleman E
    Adv Healthc Mater; 2018 Apr; 7(8):e1700939. PubMed ID: 29316363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine.
    Zhou G; Xu R; Groth T; Wang Y; Yuan X; Ye H; Dou X
    Tissue Eng Part B Rev; 2024 Apr; ():. PubMed ID: 38481114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress in 3D bioprinting technology for tissue/organ regenerative engineering.
    Matai I; Kaur G; Seyedsalehi A; McClinton A; Laurencin CT
    Biomaterials; 2020 Jan; 226():119536. PubMed ID: 31648135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Update on the main use of biomaterials and techniques associated with tissue engineering.
    Steffens D; Braghirolli DI; Maurmann N; Pranke P
    Drug Discov Today; 2018 Aug; 23(8):1474-1488. PubMed ID: 29608960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.
    Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y
    Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration.
    Ribeiro VP; Pina S; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1058():305-325. PubMed ID: 29691828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine.
    Cernencu AI; Dinu AI; Stancu IC; Lungu A; Iovu H
    Biotechnol Bioeng; 2022 Mar; 119(3):762-783. PubMed ID: 34961918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of Poly(caprolactone)-based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine.
    Zhang W; Weng T; Li Q; Jin R; You C; Wu P; Shao J; Xia S; Yang M; Han C; Wang X
    Curr Stem Cell Res Ther; 2021; 16(4):414-442. PubMed ID: 33059569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications.
    Capuana E; Lopresti F; Ceraulo M; La Carrubba V
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of hydrogels for regenerative engineering.
    Guan X; Avci-Adali M; Alarçin E; Cheng H; Kashaf SS; Li Y; Chawla A; Jang HL; Khademhosseini A
    Biotechnol J; 2017 May; 12(5):. PubMed ID: 28220995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additive manufacturing of bioactive glass biomaterials.
    Simorgh S; Alasvand N; Khodadadi M; Ghobadi F; Malekzadeh Kebria M; Brouki Milan P; Kargozar S; Baino F; Mobasheri A; Mozafari M
    Methods; 2022 Dec; 208():75-91. PubMed ID: 36334889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Biomaterials with Spatiotemporal Control for Regenerative Tissue Engineering.
    Mendenhall J
    Acc Chem Res; 2023 Jun; 56(11):1313-1319. PubMed ID: 37103937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering.
    Wasyłeczko M; Sikorska W; Chwojnowski A
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33212901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering.
    Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M
    Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.