These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 31195642)

  • 41. Silk Fibroin Materials: Biomedical Applications and Perspectives.
    De Giorgio G; Matera B; Vurro D; Manfredi E; Galstyan V; Tarabella G; Ghezzi B; D'Angelo P
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advancing biomaterials of human origin for tissue engineering.
    Chen FM; Liu X
    Prog Polym Sci; 2016 Feb; 53():86-168. PubMed ID: 27022202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques.
    Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M
    Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
    Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF
    Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural Polymeric Scaffolds for Tissue Engineering Applications.
    Ebhodaghe SO
    J Biomater Sci Polym Ed; 2021 Nov; 32(16):2144-2194. PubMed ID: 34328068
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering.
    Huang J; Xiong J; Wang D; Zhang J; Yang L; Sun S; Liang Y
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.
    Pina S; Oliveira JM; Reis RL
    Adv Mater; 2015 Feb; 27(7):1143-69. PubMed ID: 25580589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine.
    Philips C; Terrie L; Thorrez L
    Biomaterials; 2022 Apr; 283():121436. PubMed ID: 35248912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges.
    Fang W; Yang M; Wang L; Li W; Liu M; Jin Y; Wang Y; Yang R; Wang Y; Zhang K; Fu Q
    Int J Bioprint; 2023; 9(5):759. PubMed ID: 37457925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioprinting and its applications in tissue engineering and regenerative medicine.
    Aljohani W; Ullah MW; Zhang X; Yang G
    Int J Biol Macromol; 2018 Feb; 107(Pt A):261-275. PubMed ID: 28870749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D Bioprinting: New Directions in Articular Cartilage Tissue Engineering.
    O'Connell G; Garcia J; Amir J
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2657-2668. PubMed ID: 33418695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomaterial scaffolds for clinical procedures in endodontic regeneration.
    Liu H; Lu J; Jiang Q; Haapasalo M; Qian J; Tay FR; Shen Y
    Bioact Mater; 2022 Jun; 12():257-277. PubMed ID: 35310382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the progress of 3D-printed hydrogels for tissue engineering.
    Advincula RC; Dizon JRC; Caldona EB; Viers RA; Siacor FDC; Maalihan RD; Espera AH
    MRS Commun; 2021; 11(5):539-553. PubMed ID: 34367725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.