These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 31195688)
1. Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Sanchez AM; Candau R; Bernardi H Cells; 2019 Jun; 8(6):. PubMed ID: 31195688 [TBL] [Abstract][Full Text] [Related]
2. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Sanchez AM; Bernardi H; Py G; Candau RB Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(8):R956-69. PubMed ID: 25121614 [TBL] [Abstract][Full Text] [Related]
3. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. Chen CCW; Erlich AT; Hood DA Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884 [TBL] [Abstract][Full Text] [Related]
4. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. Jamart C; Francaux M; Millet GY; Deldicque L; Frère D; Féasson L J Appl Physiol (1985); 2012 May; 112(9):1529-37. PubMed ID: 22345427 [TBL] [Abstract][Full Text] [Related]
5. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Lesmana R; Sinha RA; Singh BK; Zhou J; Ohba K; Wu Y; Yau WW; Bay BH; Yen PM Endocrinology; 2016 Jan; 157(1):23-38. PubMed ID: 26562261 [TBL] [Abstract][Full Text] [Related]
6. AMP-activated protein kinase stabilizes FOXO3 in primary myotubes. Sanchez AMJ; Candau R; Bernardi H Biochem Biophys Res Commun; 2018 May; 499(3):493-498. PubMed ID: 29580989 [TBL] [Abstract][Full Text] [Related]
7. Endurance Exercise-Induced Autophagy/Mitophagy Coincides with a Reinforced Anabolic State and Increased Mitochondrial Turnover in the Cortex of Young Male Mouse Brain. Kwon I; Jang Y; Lee Y J Mol Neurosci; 2021 Jan; 71(1):42-54. PubMed ID: 32535714 [TBL] [Abstract][Full Text] [Related]
8. To Elucidate the Inhibition of Excessive Autophagy of Rhodiola crenulata on Exhaustive Exercise-Induced Skeletal Muscle Injury by Combined Network Pharmacology and Molecular Docking. Li X; Hou Y; Wang X; Zhang Y; Meng X; Hu Y; Zhang Y Biol Pharm Bull; 2020 Feb; 43(2):296-305. PubMed ID: 31787729 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. Joassard OR; Amirouche A; Gallot YS; Desgeorges MM; Castells J; Durieux AC; Berthon P; Freyssenet DG Int J Biochem Cell Biol; 2013 Nov; 45(11):2444-55. PubMed ID: 23916784 [TBL] [Abstract][Full Text] [Related]
10. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Torre-Villalvazo I; Alemán-Escondrillas G; Valle-Ríos R; Noriega LG Nutr Res; 2019 Dec; 72():1-17. PubMed ID: 31672317 [TBL] [Abstract][Full Text] [Related]
11. AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia. Chun Y; Kim J Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575924 [TBL] [Abstract][Full Text] [Related]
12. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells. Rui YN; Xu Z; Chen Z; Zhang S Autophagy; 2015; 11(5):812-32. PubMed ID: 25984893 [TBL] [Abstract][Full Text] [Related]
13. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Laker RC; Drake JC; Wilson RJ; Lira VA; Lewellen BM; Ryall KA; Fisher CC; Zhang M; Saucerman JJ; Goodyear LJ; Kundu M; Yan Z Nat Commun; 2017 Sep; 8(1):548. PubMed ID: 28916822 [TBL] [Abstract][Full Text] [Related]
14. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Vissing K; McGee S; Farup J; Kjølhede T; Vendelbo M; Jessen N Scand J Med Sci Sports; 2013 Jun; 23(3):355-66. PubMed ID: 23802289 [TBL] [Abstract][Full Text] [Related]
15. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Sanchez AM; Candau RB; Bernardi H Cell Mol Life Sci; 2014 May; 71(9):1657-71. PubMed ID: 24232446 [TBL] [Abstract][Full Text] [Related]
16. Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. Carter HN; Kim Y; Erlich AT; Zarrin-Khat D; Hood DA J Physiol; 2018 Aug; 596(16):3567-3584. PubMed ID: 29781176 [TBL] [Abstract][Full Text] [Related]
17. AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. Tong JF; Yan X; Zhu MJ; Du M J Cell Biochem; 2009 Oct; 108(2):458-68. PubMed ID: 19639604 [TBL] [Abstract][Full Text] [Related]
18. Manipulating Cellular Energetics to Slow Aging of Tissues and Organs. Sokolov SS; Severin FF Biochemistry (Mosc); 2020 Jun; 85(6):651-659. PubMed ID: 32586228 [TBL] [Abstract][Full Text] [Related]
19. Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men. Brinkmann C; Przyklenk A; Metten A; Schiffer T; Bloch W; Brixius K; Gehlert S Endocr Res; 2017 Nov; 42(4):325-330. PubMed ID: 28537848 [TBL] [Abstract][Full Text] [Related]
20. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Chen CCW; Erlich AT; Crilly MJ; Hood DA Am J Physiol Endocrinol Metab; 2018 Sep; 315(3):E404-E415. PubMed ID: 29812989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]