These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 31195741)
1. Transcriptome Profile Analysis of Winter Rapeseed ( Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in He X; Ni X; Xie P; Liu W; Yao M; Kang Y; Qin L; Hua W G3 (Bethesda); 2019 Aug; 9(8):2723-2737. PubMed ID: 31167831 [TBL] [Abstract][Full Text] [Related]
3. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661 [TBL] [Abstract][Full Text] [Related]
4. Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.). Zheng G; Dong X; Wei J; Liu Z; Aslam A; Cui J; Li H; Wang Y; Tian H; Cao X BMC Plant Biol; 2022 Aug; 22(1):414. PubMed ID: 36008781 [TBL] [Abstract][Full Text] [Related]
5. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Du C; Hu K; Xian S; Liu C; Fan J; Tu J; Fu T Mol Genet Genomics; 2016 Jun; 291(3):1053-67. PubMed ID: 26728151 [TBL] [Abstract][Full Text] [Related]
6. Physiological and Transcriptional Responses of Industrial Rapeseed ( Wang J; Jiao J; Zhou M; Jin Z; Yu Y; Liang M Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717503 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic basis for drought-resistance in Brassica napus L. Wang P; Yang C; Chen H; Song C; Zhang X; Wang D Sci Rep; 2017 Jan; 7():40532. PubMed ID: 28091614 [TBL] [Abstract][Full Text] [Related]
8. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). Zhou H; Xiao X; Asjad A; Han D; Zheng W; Xiao G; Huang Y; Zhou Q BMC Plant Biol; 2022 Mar; 22(1):130. PubMed ID: 35313826 [TBL] [Abstract][Full Text] [Related]
9. iTRAQ-based quantitative proteome analysis insights into cold stress of Winter Rapeseed (Brassica rapa L.) grown in the field. Niu Z; Liu L; Pu Y; Ma L; Wu J; Hu F; Fang Y; Li X; Sun W; Wang W; Bai C Sci Rep; 2021 Dec; 11(1):23434. PubMed ID: 34873178 [TBL] [Abstract][Full Text] [Related]
10. Physiological and transcriptomic analysis reveals the potential mechanism of Morinda officinalis How in response to freezing stress. Luo Z; Che X; Han P; Chen Z; Chen Z; Chen J; Xiang S; Ding P BMC Plant Biol; 2023 Oct; 23(1):507. PubMed ID: 37872484 [TBL] [Abstract][Full Text] [Related]
11. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus. He Y; Mao S; Gao Y; Zhu L; Wu D; Cui Y; Li J; Qian W PLoS One; 2016; 11(6):e0157558. PubMed ID: 27322342 [TBL] [Abstract][Full Text] [Related]
13. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887 [TBL] [Abstract][Full Text] [Related]
15. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress. Tan X; Long W; Zeng L; Ding X; Cheng Y; Zhang X; Zou X Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661818 [TBL] [Abstract][Full Text] [Related]
16. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Hong B; Zhou B; Peng Z; Yao M; Wu J; Wu X; Guan C; Guan M Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37046988 [TBL] [Abstract][Full Text] [Related]
17. RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight. Geng X; Dong N; Wang Y; Li G; Wang L; Guo X; Li J; Wen Z; Wei W PLoS One; 2018; 13(1):e0191297. PubMed ID: 29381708 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide analysis and functional characterization of the DELLA gene family associated with stress tolerance in B. napus. Sarwar R; Jiang T; Ding P; Gao Y; Tan X; Zhu K BMC Plant Biol; 2021 Jun; 21(1):286. PubMed ID: 34157966 [TBL] [Abstract][Full Text] [Related]
19. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
20. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed ( Wan H; Qian J; Zhang H; Lu H; Li O; Li R; Yu Y; Wen J; Zhao L; Yi B; Fu T; Shen J Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]