BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31195796)

  • 1. Combination of SCX Fractionation and Charge-Reversal Derivatization Facilitates the Identification of Nontryptic Peptides in C-Terminomics.
    Kaleja P; Helbig AO; Tholey A
    J Proteome Res; 2019 Jul; 18(7):2954-2964. PubMed ID: 31195796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.
    Westermann B; Jacome ASV; Rompais M; Carapito C; Schaeffer-Reiss C
    Methods Mol Biol; 2017; 1574():77-90. PubMed ID: 28315244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-Terminal Charge-Reversal Derivatization and Parallel Use of Multiple Proteases Facilitates Identification of Protein C-Termini by C-Terminomics.
    Somasundaram P; Koudelka T; Linke D; Tholey A
    J Proteome Res; 2016 Apr; 15(4):1369-78. PubMed ID: 26939532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).
    Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM
    Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LysargiNase and Chemical Derivatization Based Strategy for Facilitating In-Depth Profiling of C-Terminome.
    Hu H; Zhao W; Zhu M; Zhao L; Zhai L; Xu JY; Liu P; Tan M
    Anal Chem; 2019 Nov; 91(22):14522-14529. PubMed ID: 31634432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis.
    Schilling O; Huesgen PF; Barré O; Overall CM
    Methods Mol Biol; 2011; 781():59-69. PubMed ID: 21877277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of protein N-termini by charge reversal of internal peptides.
    Lai ZW; Gomez-Auli A; Keller EJ; Mayer B; Biniossek ML; Schilling O
    Proteomics; 2015 Jul; 15(14):2470-8. PubMed ID: 26013158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Extracellular Matrix Degradomes by TMT-TAILS N-Terminomics.
    Madzharova E; Sabino F; Auf dem Keller U
    Methods Mol Biol; 2019; 1944():115-126. PubMed ID: 30840238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of Protein N-Termini and Their Modifications in Complex Samples.
    Demir F; Niedermaier S; Kizhakkedathu JN; Huesgen PF
    Methods Mol Biol; 2017; 1574():35-50. PubMed ID: 28315242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.
    Kleifeld O; Doucet A; Prudova A; auf dem Keller U; Gioia M; Kizhakkedathu JN; Overall CM
    Nat Protoc; 2011 Sep; 6(10):1578-611. PubMed ID: 21959240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC.
    Tanco S; Aviles FX; Gevaert K; Lorenzo J; Van Damme P
    Methods Mol Biol; 2017; 1574():115-133. PubMed ID: 28315247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of internal peptides by site-selective blocking, phosphate labeling, and TiO2 adsorption for in-depth analysis of C-terminome.
    Chen L; Shan Y; Weng Y; Yuan H; Zhang S; Fan R; Sui Z; Zhang X; Zhang L; Zhang Y
    Anal Bioanal Chem; 2016 May; 408(14):3867-74. PubMed ID: 27071760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry.
    Schopper S; Kahraman A; Leuenberger P; Feng Y; Piazza I; Müller O; Boersema PJ; Picotti P
    Nat Protoc; 2017 Nov; 12(11):2391-2410. PubMed ID: 29072706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.
    Prudova A; auf dem Keller U; Butler GS; Overall CM
    Mol Cell Proteomics; 2010 May; 9(5):894-911. PubMed ID: 20305284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Analysis of Protein N-Terminome by Guanidination of Terminal Amines.
    Sun M; Liang Y; Li Y; Yang K; Zhao B; Yuan H; Li X; Zhang X; Liang Z; Shan Y; Zhang L; Zhang Y
    Anal Chem; 2020 Jan; 92(1):567-572. PubMed ID: 31846294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SILProNAQ: A Convenient Approach for Proteome-Wide Analysis of Protein N-Termini and N-Terminal Acetylation Quantitation.
    Bienvenut WV; Giglione C; Meinnel T
    Methods Mol Biol; 2017; 1574():17-34. PubMed ID: 28315241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Optimization and evaluation of protein C-terminal peptide enrichment strategy based on arginine cleavage].
    Zhao X; Hu H; Zhao W; Liu P; Tan M
    Se Pu; 2022 Jan; 40(1):17-27. PubMed ID: 34985212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exopeptidase Assisted N- and C-Terminal Proteome Sequencing.
    Helbig AO; Tholey A
    Anal Chem; 2020 Apr; 92(7):5023-5032. PubMed ID: 32167277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Displacement Chromatography to Online Two-Dimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry Improves Peptide Separation Efficiency and Detectability for the Analysis of Complex Proteomes.
    Kwiatkowski M; Krösser D; Wurlitzer M; Steffen P; Barcaru A; Krisp C; Horvatovich P; Bischoff R; Schlüter H
    Anal Chem; 2018 Aug; 90(16):9951-9958. PubMed ID: 30014690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Top-Down Proteomics Data by Bottom-Up-Based N-Terminomics Reveals Pitfalls in Top-Down-Based Terminomics Workflows.
    Winkels K; Koudelka T; Kaulich PT; Leippe M; Tholey A
    J Proteome Res; 2022 Sep; 21(9):2185-2196. PubMed ID: 35972260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.