These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31196115)

  • 1. Towards creating an extended metabolic model (EMM) for E. coli using enzyme promiscuity prediction and metabolomics data.
    Amin SA; Chavez E; Porokhin V; Nair NU; Hassoun S
    Microb Cell Fact; 2019 Jun; 18(1):109. PubMed ID: 31196115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological Filtering and Substrate Promiscuity Prediction for Annotating Untargeted Metabolomics.
    Hassanpour N; Alden N; Menon R; Jayaraman A; Lee K; Hassoun S
    Metabolites; 2020 Apr; 10(4):. PubMed ID: 32326153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ECMDB: the E. coli Metabolome Database.
    Guo AC; Jewison T; Wilson M; Liu Y; Knox C; Djoumbou Y; Lo P; Mandal R; Krishnamurthy R; Wishart DS
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D625-30. PubMed ID: 23109553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli.
    Oberhardt MA; Zarecki R; Reshef L; Xia F; Duran-Frigola M; Schreiber R; Henry CS; Ben-Tal N; Dwyer DJ; Gophna U; Ruppin E
    PLoS Comput Biol; 2016 Jan; 12(1):e1004705. PubMed ID: 26821166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metabolomics shows the metabolic profiles fluctuate in multi-drug resistant Escherichia coli strains.
    Lin Y; Li W; Sun L; Lin Z; Jiang Y; Ling Y; Lin X
    J Proteomics; 2019 Sep; 207():103468. PubMed ID: 31374362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active-site residues.
    Hall KR; Robins KJ; Williams EM; Rich MH; Calcott MJ; Copp JN; Little RF; Schwörer R; Evans GB; Patrick WM; Ackerley DF
    Elife; 2020 Nov; 9():. PubMed ID: 33185191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity.
    Porokhin V; Amin SA; Nicks TB; Gopinarayanan VE; Nair NU; Hassoun S
    Metab Eng Commun; 2021 Jun; 12():e00170. PubMed ID: 33850714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic In Silico Network Expansions to Predict and Exploit Enzyme Promiscuity.
    Jeffryes J; Strutz J; Henry C; Tyo KEJ
    Methods Mol Biol; 2019; 1927():11-21. PubMed ID: 30788782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic identification of metabolites controlling gene expression in E. coli.
    Lempp M; Farke N; Kuntz M; Freibert SA; Lill R; Link H
    Nat Commun; 2019 Oct; 10(1):4463. PubMed ID: 31578326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli.
    Sajed T; Marcu A; Ramirez M; Pon A; Guo AC; Knox C; Wilson M; Grant JR; Djoumbou Y; Wishart DS
    Nucleic Acids Res; 2016 Jan; 44(D1):D495-501. PubMed ID: 26481353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions.
    Vayena E; Chiappino-Pepe A; MohammadiPeyhani H; Francioli Y; Hadadi N; Ataman M; Hafner J; Pavlou S; Hatzimanikatis V
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2211197119. PubMed ID: 36343249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
    Bennett BD; Kimball EH; Gao M; Osterhout R; Van Dien SJ; Rabinowitz JD
    Nat Chem Biol; 2009 Aug; 5(8):593-9. PubMed ID: 19561621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting novel substrates for enzymes with minimal experimental effort with active learning.
    Pertusi DA; Moura ME; Jeffryes JG; Prabhu S; Walters Biggs B; Tyo KEJ
    Metab Eng; 2017 Nov; 44():171-181. PubMed ID: 29030274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models.
    Yang X; Mao Z; Zhao X; Wang R; Zhang P; Cai J; Xue C; Ma H
    Metab Eng; 2021 Sep; 67():133-144. PubMed ID: 34174426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pickaxe: a Python library for the prediction of novel metabolic reactions.
    Shebek KM; Strutz J; Broadbelt LJ; Tyo KEJ
    BMC Bioinformatics; 2023 Mar; 24(1):106. PubMed ID: 36949401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Sample Preparation for Untargeted Metabolomics Profiling of Escherichia coli.
    Ye D; Li X; Wang C; Liu S; Zhao L; Du J; Xu J; Li J; Tian L; Xia X
    Microbiol Spectr; 2021 Oct; 9(2):e0062521. PubMed ID: 34612668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli.
    Sévin DC; Fuhrer T; Zamboni N; Sauer U
    Nat Methods; 2017 Feb; 14(2):187-194. PubMed ID: 27941785
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.