These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31196182)

  • 1. Predicting instances of pathway ontology classes for pathway integration.
    Wang LL; Thomas Hayman G; Smith JR; Tutaj M; Shimoyama ME; Gennari JH
    J Biomed Semantics; 2019 Jun; 10(1):11. PubMed ID: 31196182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matching biomedical ontologies based on formal concept analysis.
    Zhao M; Zhang S; Li W; Chen G
    J Biomed Semantics; 2018 Mar; 9(1):11. PubMed ID: 29554977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining lexical and context features for automatic ontology extension.
    Althubaiti S; Kafkas Ş; Abdelhakim M; Hoehndorf R
    J Biomed Semantics; 2020 Jan; 11(1):1. PubMed ID: 31931870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease Specific Ontology of Adverse Events: Ontology extension and adaptation for Chronic Kidney Disease.
    Kang Y; Fink JC; Doerfler R; Zhou L
    Comput Biol Med; 2018 Oct; 101():210-217. PubMed ID: 30195820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bootstrapping Adversarial Learning of Biomedical Ontology Alignments.
    Maldonado RM; Harabagiu SM
    AMIA Annu Symp Proc; 2019; 2019():627-636. PubMed ID: 32308857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative.
    Harrow I; Jiménez-Ruiz E; Splendiani A; Romacker M; Woollard P; Markel S; Alam-Faruque Y; Koch M; Malone J; Waaler A
    J Biomed Semantics; 2017 Dec; 8(1):55. PubMed ID: 29197409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Word Embeddings to Learn a Better Food Ontology.
    Youn J; Naravane T; Tagkopoulos I
    Front Artif Intell; 2020; 3():584784. PubMed ID: 33733222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the interoperability of biomedical ontologies with compound alignments.
    Oliveira D; Pesquita C
    J Biomed Semantics; 2018 Jan; 9(1):1. PubMed ID: 29316968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactome from a WikiPathways Perspective.
    Bohler A; Wu G; Kutmon M; Pradhana LA; Coort SL; Hanspers K; Haw R; Pico AR; Evelo CT
    PLoS Comput Biol; 2016 May; 12(5):e1004941. PubMed ID: 27203685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard.
    El-Sappagh S; Ali F; Hendawi A; Jang JH; Kwak KS
    BMC Med Inform Decis Mak; 2019 May; 19(1):97. PubMed ID: 31077222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NCBO Ontology Recommender 2.0: an enhanced approach for biomedical ontology recommendation.
    Martínez-Romero M; Jonquet C; O'Connor MJ; Graybeal J; Pazos A; Musen MA
    J Biomed Semantics; 2017 Jun; 8(1):21. PubMed ID: 28592275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating ontologies of human diseases, phenotypes, and radiological diagnosis.
    Finke MT; Filice RW; Kahn CE
    J Am Med Inform Assoc; 2019 Feb; 26(2):149-154. PubMed ID: 30624645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ontology for representing hematologic malignancies: the cancer cell ontology.
    Serra LM; Duncan WD; Diehl AD
    BMC Bioinformatics; 2019 Apr; 20(Suppl 5):181. PubMed ID: 31272372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognizing lexical and semantic change patterns in evolving life science ontologies to inform mapping adaptation.
    Dos Reis JC; Dinh D; Da Silveira M; Pruski C; Reynaud-Delaître C
    Artif Intell Med; 2015 Mar; 63(3):153-70. PubMed ID: 25530449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling biochemical pathways in the gene ontology.
    Hill DP; D'Eustachio P; Berardini TZ; Mungall CJ; Renedo N; Blake JA
    Database (Oxford); 2016; 2016():. PubMed ID: 27589964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redesigning plant specialized metabolism with supervised machine learning using publicly available reactome data.
    Lim PK; Julca I; Mutwil M
    Comput Struct Biotechnol J; 2023; 21():1639-1650. PubMed ID: 36874159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching.
    Kiourtis A; Nifakos S; Mavrogiorgou A; Kyriazis D
    Int J Med Inform; 2019 Dec; 132():104002. PubMed ID: 31629311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving knowledge graph similarity for supervised learning in complex biomedical domains.
    Sousa RT; Silva S; Pesquita C
    BMC Bioinformatics; 2020 Jan; 21(1):6. PubMed ID: 31900127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating phenotype ontologies with PhenomeNET.
    Rodríguez-García MÁ; Gkoutos GV; Schofield PN; Hoehndorf R
    J Biomed Semantics; 2017 Dec; 8(1):58. PubMed ID: 29258588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.