BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31196185)

  • 1. HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: a two-site study.
    Grau-Vorster M; Laitinen A; Nystedt J; Vives J
    Stem Cell Res Ther; 2019 Jun; 10(1):164. PubMed ID: 31196185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of IL-17F and IL-33 correlate with HLA-DR activation in clinical-grade human bone marrow-derived multipotent mesenchymal stromal cell expansion cultures.
    Grau-Vorster M; Rodríguez L; Torrents-Zapata S; Vivas D; Codinach M; Blanco M; Oliver-Vila I; García-López J; Vives J
    Cytotherapy; 2019 Jan; 21(1):32-40. PubMed ID: 30447901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bFGF on HLA-DR expression of human bone marrow-derived mesenchymal stem cells.
    Dighe PA; Viswanathan P; Mruthunjaya AK; Seetharam RN
    J Stem Cells; 2013; 8(1):43-57. PubMed ID: 24459812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF2 induces RANKL gene expression as well as IL1β regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells.
    Bocelli-Tyndall C; Trella E; Frachet A; Zajac P; Pfaff D; Geurts J; Heiler S; Barbero A; Mumme M; Resink TJ; Schaeren S; Spagnoli GC; Tyndall A
    Ann Rheum Dis; 2015 Jan; 74(1):260-6. PubMed ID: 24249810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal Stem Cells Derived from Human Bone Marrow and Adipose Tissue Maintain Their Immunosuppressive Properties After Chondrogenic Differentiation: Role of HLA-G.
    Du WJ; Reppel L; Leger L; Schenowitz C; Huselstein C; Bensoussan D; Carosella ED; Han ZC; Rouas-Freiss N
    Stem Cells Dev; 2016 Oct; 25(19):1454-69. PubMed ID: 27465875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliance with Good Manufacturing Practice in the Assessment of Immunomodulation Potential of Clinical Grade Multipotent Mesenchymal Stromal Cells Derived from Wharton's Jelly.
    Grau-Vorster M; Rodríguez L; Del Mazo-Barbara A; Mirabel C; Blanco M; Codinach M; Gómez SG; Querol S; García-López J; Vives J
    Cells; 2019 May; 8(5):. PubMed ID: 31117301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells.
    Codinach M; Blanco M; Ortega I; Lloret M; Reales L; Coca MI; Torrents S; Doral M; Oliver-Vila I; Requena-Montero M; Vives J; Garcia-López J
    Cytotherapy; 2016 Sep; 18(9):1197-208. PubMed ID: 27424149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM.
    Müller I; Kordowich S; Holzwarth C; Spano C; Isensee G; Staiber A; Viebahn S; Gieseke F; Langer H; Gawaz MP; Horwitz EM; Conte P; Handgretinger R; Dominici M
    Cytotherapy; 2006; 8(5):437-44. PubMed ID: 17050248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources.
    Amati E; Perbellini O; Rotta G; Bernardi M; Chieregato K; Sella S; Rodeghiero F; Ruggeri M; Astori G
    Stem Cell Res Ther; 2018 Jan; 9(1):10. PubMed ID: 29338788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenotransplantation of interferon-gamma-pretreated clumps of a human mesenchymal stem cell/extracellular matrix complex induces mouse calvarial bone regeneration.
    Takeshita K; Motoike S; Kajiya M; Komatsu N; Takewaki M; Ouhara K; Iwata T; Takeda K; Mizuno N; Fujita T; Kurihara H
    Stem Cell Res Ther; 2017 Apr; 8(1):101. PubMed ID: 28446226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.
    Laitinen A; Oja S; Kilpinen L; Kaartinen T; Möller J; Laitinen S; Korhonen M; Nystedt J
    Cytotechnology; 2016 Aug; 68(4):891-906. PubMed ID: 25777046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells.
    Antoon R; Yeger H; Loai Y; Islam S; Farhat WA
    J Biomed Mater Res A; 2012 Jan; 100(1):72-83. PubMed ID: 21972045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of HLA-DR by mesenchymal stromal cells in the platelet lysate era: an obsolete release criterion for MSCs?
    Kuçi Z; Piede N; Vogelsang K; Pfeffermann LM; Wehner S; Salzmann-Manrique E; Stais M; Kreyenberg H; Bonig H; Bader P; Kuçi S
    J Transl Med; 2024 Jan; 22(1):39. PubMed ID: 38195462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-Culturing of Multipotent Mesenchymal Stromal Cells with Autological and Allogenic Lymphocytes.
    Kapranov NM; Davydova YO; Gal'tseva IV; Petinati NA; Bakshinskaitė MV; Drize NI; Kuz'mina LA; Parovichnikova EN; Savchenko VG
    Bull Exp Biol Med; 2018 Mar; 164(4):446-452. PubMed ID: 29504089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypical/functional characterization of in vitro-expanded mesenchymal stromal cells from patients with Crohn's disease.
    Bernardo ME; Avanzini MA; Ciccocioppo R; Perotti C; Cometa AM; Moretta A; Marconi M; Valli M; Novara F; Bonetti F; Zuffardi O; Maccario R; Corazza GR; Locatelli F
    Cytotherapy; 2009; 11(7):825-36. PubMed ID: 19903096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells.
    Kinzebach S; Dietz L; Klüter H; Thierse HJ; Bieback K
    BMC Cell Biol; 2013 Oct; 14():48. PubMed ID: 24168020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.
    Sassoli C; Vallone L; Tani A; Chellini F; Nosi D; Zecchi-Orlandini S
    Cell Tissue Res; 2018 Jun; 372(3):549-570. PubMed ID: 29404727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells.
    Bocelli-Tyndall C; Zajac P; Di Maggio N; Trella E; Benvenuto F; Iezzi G; Scherberich A; Barbero A; Schaeren S; Pistoia V; Spagnoli G; Vukcevic M; Martin I; Tyndall A
    Arthritis Rheum; 2010 Dec; 62(12):3815-25. PubMed ID: 20824797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability enhancement of clinical grade multipotent mesenchymal stromal cell-based products.
    Mirabel C; Puente-Massaguer E; Del Mazo-Barbara A; Reyes B; Morton P; Gòdia F; Vives J
    J Transl Med; 2018 Oct; 16(1):291. PubMed ID: 30355298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.