These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 31196935)
1. Radiation Force as a Physical Mechanism for Ultrasonic Neurostimulation of the Menz MD; Ye P; Firouzi K; Nikoozadeh A; Pauly KB; Khuri-Yakub P; Baccus SA J Neurosci; 2019 Aug; 39(32):6251-6264. PubMed ID: 31196935 [TBL] [Abstract][Full Text] [Related]
2. Precise neural stimulation in the retina using focused ultrasound. Menz MD; Oralkan O; Khuri-Yakub PT; Baccus SA J Neurosci; 2013 Mar; 33(10):4550-60. PubMed ID: 23467371 [TBL] [Abstract][Full Text] [Related]
3. Frequency Dependence of Ultrasound Neurostimulation in the Mouse Brain. Ye PP; Brown JR; Pauly KB Ultrasound Med Biol; 2016 Jul; 42(7):1512-30. PubMed ID: 27090861 [TBL] [Abstract][Full Text] [Related]
4. Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration. Lu G; Gong C; Sun Y; Qian X; Rajendran Nair DS; Li R; Zeng Y; Ji J; Zhang J; Kang H; Jiang L; Chen J; Chang CF; Thomas BB; Humayun MS; Zhou Q Nat Commun; 2024 May; 15(1):4481. PubMed ID: 38802397 [TBL] [Abstract][Full Text] [Related]
5. Neurostimulation success rate of repetitive-pulse focused ultrasound in an in vivo giant axon model: An acoustic parametric study. Vion-Bailly J; Suarez-Castellanos IM; Chapelon JY; Carpentier A; N'Djin WA Med Phys; 2022 Jan; 49(1):682-701. PubMed ID: 34796512 [TBL] [Abstract][Full Text] [Related]
6. A causal study of the phenomenon of ultrasound neurostimulation applied to an in vivo invertebrate nervous model. Vion-Bailly J; N'Djin WA; Suarez Castellanos IM; Mestas JL; Carpentier A; Chapelon JY Sci Rep; 2019 Sep; 9(1):13738. PubMed ID: 31551448 [TBL] [Abstract][Full Text] [Related]
7. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357 [TBL] [Abstract][Full Text] [Related]
8. Simulation Study of an Ultrasound Retinal Prosthesis With a Novel Contact-Lens Array for Noninvasive Retinal Stimulation. Gao M; Yu Y; Zhao H; Li G; Jiang H; Wang C; Cai F; Chan LL; Chiu B; Qian W; Qiu W; Zheng H IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1605-1611. PubMed ID: 28320674 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. Kubanek J; Shukla P; Das A; Baccus SA; Goodman MB J Neurosci; 2018 Mar; 38(12):3081-3091. PubMed ID: 29463641 [TBL] [Abstract][Full Text] [Related]
10. A Novel Racing Array Transducer for Noninvasive Ultrasonic Retinal Stimulation: A Simulation Study. Yu Y; Zhang Z; Cai F; Su M; Jiang Q; Zhou Q; Humayun MS; Qiu W; Zheng H Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30999576 [TBL] [Abstract][Full Text] [Related]
11. Patch Clamp Technology for Focused Ultrasonic (FUS) Neuromodulation. Kim ES; Chang SY Methods Mol Biol; 2022; 2393():657-670. PubMed ID: 34837205 [TBL] [Abstract][Full Text] [Related]
12. Can ionic concentration changes due to mechanical deformation be responsible for the neurostimulation caused by focused ultrasound? A simulation study. Filkin V; Kuznetsov I; Antonova O; Tarotin I; Nemov A; Aristovich K Physiol Meas; 2021 Nov; 42(10):. PubMed ID: 34530410 [No Abstract] [Full Text] [Related]
13. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605 [TBL] [Abstract][Full Text] [Related]
14. Interaction of low frequency electric fields with the nervous system: the retina as a model system. Attwell D Radiat Prot Dosimetry; 2003; 106(4):341-8. PubMed ID: 14690277 [TBL] [Abstract][Full Text] [Related]
15. Ultrasonic Retinal Neuromodulation and Acoustic Retinal Prosthesis. Lo PA; Huang K; Zhou Q; Humayun MS; Yue L Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066085 [TBL] [Abstract][Full Text] [Related]
16. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation. Plaksin M; Kimmel E; Shoham S eNeuro; 2016; 3(3):. PubMed ID: 27390775 [TBL] [Abstract][Full Text] [Related]
17. Diversity of biomedical applications of acoustic radiation force. Sarvazyan A Ultrasonics; 2010 Feb; 50(2):230-4. PubMed ID: 19880152 [TBL] [Abstract][Full Text] [Related]
18. Understanding ultrasound neuromodulation using a computationally efficient and interpretable model of intramembrane cavitation. Lemaire T; Neufeld E; Kuster N; Micera S J Neural Eng; 2019 Aug; 16(4):046007. PubMed ID: 30952150 [TBL] [Abstract][Full Text] [Related]
19. Focused ultrasound stimulation of an ex-vivo Aplysia abdominal ganglion preparation. Jordan T; Newcomb JM; Hoppa MB; Luke GP J Neurosci Methods; 2022 Apr; 372():109536. PubMed ID: 35227740 [TBL] [Abstract][Full Text] [Related]