BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 31197012)

  • 1. Long-duration hippocampal sharp wave ripples improve memory.
    Fernández-Ruiz A; Oliva A; Fermino de Oliveira E; Rocha-Almeida F; Tingley D; Buzsáki G
    Science; 2019 Jun; 364(6445):1082-1086. PubMed ID: 31197012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of experience for memory by hippocampal sharp wave ripples.
    Yang W; Sun C; Huszár R; Hainmueller T; Kiselev K; Buzsáki G
    Science; 2024 Mar; 383(6690):1478-1483. PubMed ID: 38547293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of Gamma Frequency Power during Hippocampal Sharp-Wave Ripples.
    Oliva A; Fernández-Ruiz A; Fermino de Oliveira E; Buzsáki G
    Cell Rep; 2018 Nov; 25(7):1693-1700.e4. PubMed ID: 30428340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex.
    Zutshi I; Buzsáki G
    Curr Biol; 2023 Sep; 33(17):3648-3659.e4. PubMed ID: 37572665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
    Nokia MS; Waselius T; Sahramäki J; Penttonen M
    J Neurophysiol; 2020 May; 123(5):1671-1681. PubMed ID: 32208887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sharp wave ripples during learning stabilize the hippocampal spatial map.
    Roux L; Hu B; Eichler R; Stark E; Buzsáki G
    Nat Neurosci; 2017 Jun; 20(6):845-853. PubMed ID: 28394323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning-induced plasticity regulates hippocampal sharp wave-ripple drive.
    Girardeau G; Cei A; Zugaro M
    J Neurosci; 2014 Apr; 34(15):5176-83. PubMed ID: 24719097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples.
    Oliva A; Fernández-Ruiz A; Buzsáki G; Berényi A
    Neuron; 2016 Sep; 91(6):1342-1355. PubMed ID: 27593179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monosynaptic Hippocampal-Prefrontal Projections Contribute to Spatial Memory Consolidation in Mice.
    Binder S; Mölle M; Lippert M; Bruder R; Aksamaz S; Ohl F; Wiegert JS; Marshall L
    J Neurosci; 2019 Aug; 39(35):6978-6991. PubMed ID: 31285301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
    Jahnke S; Timme M; Memmesheimer RM
    J Neurosci; 2015 Dec; 35(49):16236-58. PubMed ID: 26658873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subiculum as a generator of sharp wave-ripples in the rodent hippocampus.
    Imbrosci B; Nitzan N; McKenzie S; Donoso JR; Swaminathan A; Böhm C; Maier N; Schmitz D
    Cell Rep; 2021 Apr; 35(3):109021. PubMed ID: 33882307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circuit mechanisms of hippocampal reactivation during sleep.
    Malerba P; Bazhenov M
    Neurobiol Learn Mem; 2019 Apr; 160():98-107. PubMed ID: 29723670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal-cortical coupling differentiates long-term memory processes.
    Dahal P; Rauhala OJ; Khodagholy D; Gelinas JN
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2207909120. PubMed ID: 36749719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Awake hippocampal sharp-wave ripples support spatial memory.
    Jadhav SP; Kemere C; German PW; Frank LM
    Science; 2012 Jun; 336(6087):1454-8. PubMed ID: 22555434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory.
    Zhang Y; Cao L; Varga V; Jing M; Karadas M; Li Y; Buzsáki G
    Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33833054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Characterization of Neurophysiological Diversity in the Lateral Supramammillary Nucleus during Hippocampal Sharp-wave Ripples of Adult Rats.
    Vicente AF; Slézia A; Ghestem A; Bernard C; Quilichini PP
    Neuroscience; 2020 May; 435():95-111. PubMed ID: 32222556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory.
    Swift KM; Gross BA; Frazer MA; Bauer DS; Clark KJD; Vazey EM; Aston-Jones G; Li Y; Pickering AE; Sara SJ; Poe GR
    Curr Biol; 2018 Nov; 28(22):3599-3609.e4. PubMed ID: 30393040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preexisting hippocampal network dynamics constrain optogenetically induced place fields.
    McKenzie S; Huszár R; English DF; Kim K; Christensen F; Yoon E; Buzsáki G
    Neuron; 2021 Mar; 109(6):1040-1054.e7. PubMed ID: 33539763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal CA1 Ripples as Inhibitory Transients.
    Malerba P; Krishnan GP; Fellous JM; Bazhenov M
    PLoS Comput Biol; 2016 Apr; 12(4):e1004880. PubMed ID: 27093059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective suppression of hippocampal ripples impairs spatial memory.
    Girardeau G; Benchenane K; Wiener SI; Buzsáki G; Zugaro MB
    Nat Neurosci; 2009 Oct; 12(10):1222-3. PubMed ID: 19749750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.