BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31197035)

  • 1. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by
    Verstraete MM; Morales LD; Kobylarz MJ; Loutet SA; Laakso HA; Pinter TB; Stillman MJ; Heinrichs DE; Murphy MEP
    J Biol Chem; 2019 Jul; 294(30):11622-11636. PubMed ID: 31197035
    [No Abstract]   [Full Text] [Related]  

  • 2. SbnI is a free serine kinase that generates
    Verstraete MM; Perez-Borrajero C; Brown KL; Heinrichs DE; Murphy MEP
    J Biol Chem; 2018 Apr; 293(16):6147-6160. PubMed ID: 29483190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.
    Laakso HA; Marolda CL; Pinter TB; Stillman MJ; Heinrichs DE
    J Biol Chem; 2016 Jan; 291(1):29-40. PubMed ID: 26534960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Staphylococcus aureus heme and siderophore-iron acquisition pathways.
    Conroy BS; Grigg JC; Kolesnikov M; Morales LD; Murphy MEP
    Biometals; 2019 Jun; 32(3):409-424. PubMed ID: 30911924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.
    Cheung J; Beasley FC; Liu S; Lajoie GA; Heinrichs DE
    Mol Microbiol; 2009 Nov; 74(3):594-608. PubMed ID: 19775248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus.
    Beasley FC; Vinés ED; Grigg JC; Zheng Q; Liu S; Lajoie GA; Murphy ME; Heinrichs DE
    Mol Microbiol; 2009 May; 72(4):947-63. PubMed ID: 19400778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of reductases IruO and NtrA in iron acquisition by Staphylococcus aureus.
    Hannauer M; Arifin AJ; Heinrichs DE
    Mol Microbiol; 2015 Jun; 96(6):1192-210. PubMed ID: 25777658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus.
    Madsen JL; Johnstone TC; Nolan EM
    J Am Chem Soc; 2015 Jul; 137(28):9117-27. PubMed ID: 26030732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus
    Batko IZ; Flannagan RS; Guariglia-Oropeza V; Sheldon JR; Heinrichs DE
    J Bacteriol; 2021 Nov; 203(24):e0045821. PubMed ID: 34606375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a positively charged platform in Staphylococcus aureus HtsA that is essential for ferric staphyloferrin A transport.
    Cooper JD; Hannauer M; Marolda CL; Briere LA; Heinrichs DE
    Biochemistry; 2014 Aug; 53(31):5060-9. PubMed ID: 25050909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus.
    Grigg JC; Cheung J; Heinrichs DE; Murphy ME
    J Biol Chem; 2010 Nov; 285(45):34579-88. PubMed ID: 20810662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus.
    Brozyna JR; Sheldon JR; Heinrichs DE
    Microbiologyopen; 2014 Apr; 3(2):182-95. PubMed ID: 24515974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus.
    Hannauer M; Sheldon JR; Heinrichs DE
    FEBS Lett; 2015 Mar; 589(6):730-7. PubMed ID: 25680529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase.
    Sheldon JR; Marolda CL; Heinrichs DE
    Mol Microbiol; 2014 May; 92(4):824-39. PubMed ID: 24666349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus.
    Beasley FC; Cheung J; Heinrichs DE
    BMC Microbiol; 2011 Sep; 11():199. PubMed ID: 21906287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor.
    Kobylarz MJ; Grigg JC; Takayama SJ; Rai DK; Heinrichs DE; Murphy ME
    Chem Biol; 2014 Mar; 21(3):379-88. PubMed ID: 24485762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural biology of heme binding in the Staphylococcus aureus Isd system.
    Grigg JC; Ukpabi G; Gaudin CF; Murphy ME
    J Inorg Biochem; 2010 Mar; 104(3):341-8. PubMed ID: 19853304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into Substrate Recognition and Activity Regulation of the Key Decarboxylase SbnH in Staphyloferrin B Biosynthesis.
    Tang J; Ju Y; Gu Q; Xu J; Zhou H
    J Mol Biol; 2019 Dec; 431(24):4868-4881. PubMed ID: 31634470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis.
    Kobylarz MJ; Grigg JC; Liu Y; Lee MS; Heinrichs DE; Murphy ME
    Biochemistry; 2016 Feb; 55(6):927-39. PubMed ID: 26794841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket.
    Grigg JC; Cooper JD; Cheung J; Heinrichs DE; Murphy ME
    J Biol Chem; 2010 Apr; 285(15):11162-71. PubMed ID: 20147287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.