These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31197072)

  • 21. Processing TIRF Microscopy Images to Characterize the Dynamics and Morphology of Bacterial Actin-Like Assemblies.
    Billaudeau C; Chastanet A; Carballido-López R
    Methods Mol Biol; 2020; 2101():135-145. PubMed ID: 31879902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy.
    Boehm EM; Subramanyam S; Ghoneim M; Washington MT; Spies M
    Methods Enzymol; 2016; 581():105-145. PubMed ID: 27793278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain Region Specific Single-Molecule Fluorescence Imaging.
    Fu X; Moonschi FH; Fox-Loe AM; Snell AA; Hopkins DM; Avelar AJ; Henderson BJ; Pauly JR; Richards CI
    Anal Chem; 2019 Aug; 91(15):10125-10131. PubMed ID: 31298524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic.
    Bacic L; Sabantsev A; Deindl S
    Curr Opin Struct Biol; 2020 Dec; 65():61-68. PubMed ID: 32634693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coming Together: RNAs and Proteins Assemble under the Single-Molecule Fluorescence Microscope.
    Jalihal AP; Lund PE; Walter NG
    Cold Spring Harb Perspect Biol; 2019 Apr; 11(4):. PubMed ID: 30936188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding Protein Mobility in Bacteria by Tracking Single Molecules.
    Kapanidis AN; Uphoff S; Stracy M
    J Mol Biol; 2018 Oct; 430(22):4443-4455. PubMed ID: 29753778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule fluorescence microscopy review: shedding new light on old problems.
    Shashkova S; Leake MC
    Biosci Rep; 2017 Aug; 37(4):. PubMed ID: 28694303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A super-resolution platform for correlative live single-molecule imaging and STED microscopy.
    Inavalli VVGK; Lenz MO; Butler C; Angibaud J; Compans B; Levet F; Tønnesen J; Rossier O; Giannone G; Thoumine O; Hosy E; Choquet D; Sibarita JB; Nägerl UV
    Nat Methods; 2019 Dec; 16(12):1263-1268. PubMed ID: 31636458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges.
    Pichon X; Lagha M; Mueller F; Bertrand E
    Mol Cell; 2018 Aug; 71(3):468-480. PubMed ID: 30075145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale.
    Dahlberg PD; Moerner WE
    Annu Rev Phys Chem; 2021 Apr; 72():253-278. PubMed ID: 33441030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence microscopy for visualizing single-molecule protein dynamics.
    Yokota H
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129362. PubMed ID: 31078674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-molecule tracking technologies for quantifying the dynamics of gene regulation in cells, tissue and embryos.
    Boka AP; Mukherjee A; Mir M
    Development; 2021 Sep; 148(18):. PubMed ID: 34490887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying the global binding and target-search dynamics of epigenetic regulatory factors using live-cell single-molecule tracking.
    Brown K; Kent S; Ren X
    STAR Protoc; 2021 Dec; 2(4):100959. PubMed ID: 34825219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion Analysis of NAnoscopic Ensembles: A Tracking-Free Diffusivity Analysis for NAnoscopic Ensembles in Biological Samples and Nanotechnology.
    Wolf A; Volz-Rakebrand P; Balke J; Alexiev U
    Small; 2023 Apr; 19(16):e2206722. PubMed ID: 36670094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Follow-up review: recent progress in the development of super-resolution optical microscopy.
    Fujita K
    Microscopy (Oxf); 2016 Aug; 65(4):275-81. PubMed ID: 27385787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PALM and STORM: unlocking live-cell super-resolution.
    Henriques R; Griffiths C; Hesper Rego E; Mhlanga MM
    Biopolymers; 2011 May; 95(5):322-31. PubMed ID: 21254001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic analysis beyond the diffraction limit.
    Dong B; Davis JL; Sun C; Zhang HF
    Int J Biochem Cell Biol; 2018 Aug; 101():113-117. PubMed ID: 29874548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial cell wall nanoimaging by autoblinking microscopy.
    Floc'h K; Lacroix F; Barbieri L; Servant P; Galland R; Butler C; Sibarita JB; Bourgeois D; Timmins J
    Sci Rep; 2018 Sep; 8(1):14038. PubMed ID: 30232348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.