These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31197075)

  • 1. Determination of Waste Industrial Dust Safety Characteristics.
    Tureková I; Mračková E; Marková I
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31197075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides.
    Lu KT; Chen TC; Hu KH
    J Hazard Mater; 2009 Jan; 161(1):246-56. PubMed ID: 18440131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity.
    Bajcar M; Saletnik B; Zaguła G; Puchalski C
    Molecules; 2020 Aug; 25(15):. PubMed ID: 32752237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of parameters used to prevent ignition of stored materials and to protect against explosions in food industries.
    Ramírez A; García-Torrent J; Aguado PJ
    J Hazard Mater; 2009 Aug; 168(1):115-20. PubMed ID: 19285799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model to assess dust explosion occurrence probability.
    Hassan J; Khan F; Amyotte P; Ferdous R
    J Hazard Mater; 2014 Mar; 268():140-9. PubMed ID: 24486616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fire and Explosion Hazard of Coloured Powders Used during the Holi Festival.
    Kukfisz B; Piec R
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hazardous characteristics of dust waste from metal manufacturing industries in South Korea.
    Yoon CW; Yoon YS; Hong SY; Jeon TW; Shin SK
    Waste Manag Res; 2021 Dec; 39(12):1471-1479. PubMed ID: 33719778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderation of Al dust explosions by micro- and nano-sized Al
    Bu Y; Li C; Amyotte P; Yuan W; Yuan C; Li G
    J Hazard Mater; 2020 Jan; 381():120968. PubMed ID: 31446226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explosion parameters and combustion kinetics of biomass dust.
    Liu A; Chen J; Huang X; Lin J; Zhang X; Xu W
    Bioresour Technol; 2019 Dec; 294():122168. PubMed ID: 31569047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Protecting Safety During Dust Fires and Dust Explosions - The Example of the Formosa Fun Coast Water Park Accident].
    Hsieh MH; Wu JW; Li YC; Tang JS; Hsieh CC
    Hu Li Za Zhi; 2016 Feb; 63(1):5-11. PubMed ID: 26813056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the inerting effect of crystalline II type Ammonium Polyphosphate on explosion characteristics of micron-size Acrylates Copolymer dust.
    Yu Y; Li Y; Zhang Q; Ni W; Jiang J
    J Hazard Mater; 2018 Feb; 344():558-565. PubMed ID: 29102638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the consequences of primary dust explosions in interconnected vessels.
    Kosinski P; Hoffmann AC
    J Hazard Mater; 2006 Sep; 137(2):752-61. PubMed ID: 16730896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explosive property and combustion kinetics of grain dust with different particle sizes.
    Zhao J; Tang G; Wang Y; Han Y
    Heliyon; 2020 Mar; 6(3):e03457. PubMed ID: 32154415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-friendly wood-plastic composites from laminate sanding dust and waste poly(propylene) food pails.
    Huang Y; Lu L; Ding C; Pan M
    Waste Manag; 2022 Jul; 149():96-104. PubMed ID: 35728480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dataset on impact strength, flammability test and water absorption test for innovative polymer-quarry dust composite.
    Shagwira H; Mwema F; Mbuya T; Adediran A
    Data Brief; 2020 Apr; 29():105384. PubMed ID: 32195306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combustible wood dust explosions and impacts on environments and health - A review.
    Zhou X; Li X; Cui Z; Wu L; Zhou H; Lu X
    Environ Res; 2023 Jan; 216(Pt 3):114658. PubMed ID: 36374653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: a comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure.
    Anh HQ; Nam VD; Tri TM; Ha NM; Ngoc NT; Mai PTN; Anh DH; Minh NH; Tuan NA; Minh TB
    Environ Geochem Health; 2017 Aug; 39(4):935-954. PubMed ID: 27542012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.