BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 31197269)

  • 1. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural proteins for the formation and maintenance of the 3D genome.
    Li M; Gan J; Sun Y; Xu Z; Yang J; Sun Y; Li C
    Sci China Life Sci; 2020 Jun; 63(6):795-810. PubMed ID: 32249389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What's in the "fold"?
    Mehra P; Kalani A
    Life Sci; 2018 Oct; 211():118-125. PubMed ID: 30213728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic role of cohesin in maintaining human genome architecture.
    Agarwal A; Korsak S; Choudhury A; Plewczynski D
    Bioessays; 2023 Oct; 45(10):e2200240. PubMed ID: 37603403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of nuclear matrix protein HNRNPU in maintaining the architecture of 3D genome.
    Zhang L; Song D; Zhu B; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():161-167. PubMed ID: 29981443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architectural proteins: regulators of 3D genome organization in cell fate.
    Gómez-Díaz E; Corces VG
    Trends Cell Biol; 2014 Nov; 24(11):703-11. PubMed ID: 25218583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Irreversible Transcriptional Reprogramming in Human Stem Cells Accompanied by Discordance between Replication Timing and Chromatin Compartment.
    Dileep V; Wilson KA; Marchal C; Lyu X; Zhao PA; Li B; Poulet A; Bartlett DA; Rivera-Mulia JC; Qin ZS; Robins AJ; Schulz TC; Kulik MJ; McCord RP; Dekker J; Dalton S; Corces VG; Gilbert DM
    Stem Cell Reports; 2019 Jul; 13(1):193-206. PubMed ID: 31231024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D spatial genome organization in the nervous system: From development and plasticity to disease.
    Fujita Y; Pather SR; Ming GL; Song H
    Neuron; 2022 Sep; 110(18):2902-2915. PubMed ID: 35777365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in chromosome capture techniques unraveling 3D genome architecture in germ cells, health, and disease.
    Pandupuspitasari NS; Khan FA; Huang C; Ali A; Yousaf MR; Shakeel F; Putri EM; Negara W; Muktiani A; Prasetiyono BWHE; Kustiawan L; Wahyuni DS
    Funct Integr Genomics; 2023 Jun; 23(3):214. PubMed ID: 37386239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional organization and dynamics of the genome.
    Szalaj P; Plewczynski D
    Cell Biol Toxicol; 2018 Oct; 34(5):381-404. PubMed ID: 29568981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment.
    Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE
    Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation.
    Zhao X; Zhu S; Peng W; Xue HH
    J Immunol; 2022 Dec; 209(12):2269-2278. PubMed ID: 36469845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topologically Associating Domains: An invariant framework or a dynamic scaffold?
    Cubeñas-Potts C; Corces VG
    Nucleus; 2015; 6(6):430-4. PubMed ID: 26418477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTCF: a Swiss-army knife for genome organization and transcription regulation.
    Braccioli L; de Wit E
    Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilevel view on chromatin architecture alterations in cancer.
    Gridina M; Fishman V
    Front Genet; 2022; 13():1059617. PubMed ID: 36468037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.