These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

777 related articles for article (PubMed ID: 31197269)

  • 21. Multilevel view on chromatin architecture alterations in cancer.
    Gridina M; Fishman V
    Front Genet; 2022; 13():1059617. PubMed ID: 36468037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development.
    Pongubala JMR; Murre C
    Front Immunol; 2021; 12():633825. PubMed ID: 33854505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The multiscale effects of polycomb mechanisms on 3D chromatin folding.
    Cheutin T; Cavalli G
    Crit Rev Biochem Mol Biol; 2019 Oct; 54(5):399-417. PubMed ID: 31698957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of high-order chromatin state in the regulation of stem cell fate.
    Chen X; Lin H; Li G
    Biochem Soc Trans; 2022 Dec; 50(6):1809-1822. PubMed ID: 36484643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance.
    Jost D; Vaillant C
    Nucleic Acids Res; 2018 Mar; 46(5):2252-2264. PubMed ID: 29365171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial organization of genome architecture in neuronal development and disease.
    Fujita Y; Yamashita T
    Neurochem Int; 2018 Oct; 119():49-56. PubMed ID: 28757389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations.
    Cook PR; Marenduzzo D
    Nucleic Acids Res; 2018 Nov; 46(19):9895-9906. PubMed ID: 30239812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.
    Cardozo Gizzi AM; Cattoni DI; Fiche JB; Espinola SM; Gurgo J; Messina O; Houbron C; Ogiyama Y; Papadopoulos GL; Cavalli G; Lagha M; Nollmann M
    Mol Cell; 2019 Apr; 74(1):212-222.e5. PubMed ID: 30795893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review: Chromatin organization in plant and animal stem cell maintenance.
    Zheng Y; Liu X
    Plant Sci; 2019 Apr; 281():173-179. PubMed ID: 30824049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture.
    Alpsoy A; Sood S; Dykhuizen EC
    Biology (Basel); 2021 Mar; 10(4):. PubMed ID: 33801596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding the organization, dynamics, and function of the 4D genome.
    Aboelnour E; Bonev B
    Dev Cell; 2021 Jun; 56(11):1562-1573. PubMed ID: 33984271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forces driving the three-dimensional folding of eukaryotic genomes.
    Rada-Iglesias A; Grosveld FG; Papantonis A
    Mol Syst Biol; 2018 Jun; 14(6):e8214. PubMed ID: 29858282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.
    Paulsen J; Liyakat Ali TM; Nekrasov M; Delbarre E; Baudement MO; Kurscheid S; Tremethick D; Collas P
    Nat Genet; 2019 May; 51(5):835-843. PubMed ID: 31011212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation and large scale spatial organization of the genome.
    Joffe B; Leonhardt H; Solovei I
    Curr Opin Genet Dev; 2010 Oct; 20(5):562-9. PubMed ID: 20561778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D genome organization during lymphocyte development and activation.
    van Schoonhoven A; Huylebroeck D; Hendriks RW; Stadhouders R
    Brief Funct Genomics; 2020 Mar; 19(2):71-82. PubMed ID: 31819944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis.
    Wang Y; Wang H; Zhang Y; Du Z; Si W; Fan S; Qin D; Wang M; Duan Y; Li L; Jiao Y; Li Y; Wang Q; Shi Q; Wu X; Xie W
    Mol Cell; 2019 Feb; 73(3):547-561.e6. PubMed ID: 30735655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin Domains: The Unit of Chromosome Organization.
    Dixon JR; Gorkin DU; Ren B
    Mol Cell; 2016 Jun; 62(5):668-80. PubMed ID: 27259200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.