BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31197317)

  • 1. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based design of bistable cell factories for metabolic engineering.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2018 Apr; 34(8):1363-1371. PubMed ID: 29220508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian kinetic modeling for tracer-based metabolomic data.
    Zhang X; Su Y; Lane AN; Stromberg AJ; Fan TWM; Wang C
    BMC Bioinformatics; 2023 Mar; 24(1):108. PubMed ID: 36949395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating parameters for generalized mass action models with connectivity information.
    Ko CL; Voit EO; Wang FS
    BMC Bioinformatics; 2009 May; 10():140. PubMed ID: 19432964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems.
    Gábor A; Villaverde AF; Banga JR
    BMC Syst Biol; 2017 May; 11(1):54. PubMed ID: 28476119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental design for parameter estimation in steady-state linear models of metabolic networks.
    Frøysa HG; Skaug HJ; Alendal G
    Math Biosci; 2020 Jan; 319():108291. PubMed ID: 31786081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incremental parameter estimation of kinetic metabolic network models.
    Jia G; Stephanopoulos G; Gunawan R
    BMC Syst Biol; 2012 Nov; 6():142. PubMed ID: 23171810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Software for dynamic analysis of tracer-based metabolomic data: estimation of metabolic fluxes and their statistical analysis.
    Selivanov VA; Marin S; Lee PW; Cascante M
    Bioinformatics; 2006 Nov; 22(22):2806-12. PubMed ID: 17000750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states.
    Hu M; Suthers PF; Maranas CD
    Metab Eng; 2024 Mar; 82():123-133. PubMed ID: 38336004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streamlining the construction of large-scale dynamic models using generic kinetic equations.
    Adiamah DA; Handl J; Schwartz JM
    Bioinformatics; 2010 May; 26(10):1324-31. PubMed ID: 20363732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified framework for estimating parameters of kinetic biological models.
    Baker SM; Poskar CH; Schreiber F; Junker BH
    BMC Bioinformatics; 2015 Mar; 16():104. PubMed ID: 25886743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks.
    C Mason J; W Covert M
    J Theor Biol; 2019 Jan; 461():145-156. PubMed ID: 30365946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifiability and experimental design in perturbation studies.
    Gross T; Blüthgen N
    Bioinformatics; 2020 Jul; 36(Suppl_1):i482-i489. PubMed ID: 32657359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.
    Ligon TS; Fröhlich F; Chis OT; Banga JR; Balsa-Canto E; Hasenauer J
    Bioinformatics; 2018 Apr; 34(8):1421-1423. PubMed ID: 29206901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic isotopomer labeling systems. Part II: structural flux identifiability analysis.
    Isermann N; Wiechert W
    Math Biosci; 2003 Jun; 183(2):175-214. PubMed ID: 12711410
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.