BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

871 related articles for article (PubMed ID: 31197620)

  • 1. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis.
    Wu JR; Zhao Y; Zhou XP; Qin X
    Biomed Pharmacother; 2020 Jan; 121():109647. PubMed ID: 31733575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis.
    Zhong G; Lou W; Shen Q; Yu K; Zheng Y
    Mol Med Rep; 2020 Feb; 21(2):557-566. PubMed ID: 31974598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of differentially expressed proteins between HER2 positive and triple negative breast cancer and their prognostic significance.
    Wei Z; Sijia F; Rui T; Yang L; Jianjun H; Bin W; Jing X
    Ann Diagn Pathol; 2021 Dec; 55():151834. PubMed ID: 34610510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatics Analysis Identifies IL6ST as a Potential Tumor Suppressor Gene for Triple-Negative Breast Cancer.
    Jia R; Weng Y; Li Z; Liang W; Ji Y; Liang Y; Ning P
    Reprod Sci; 2021 Aug; 28(8):2331-2341. PubMed ID: 33650093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key candidate genes, pathways and related prognostic values in ER-negative/HER2-negative breast cancer by bioinformatics analysis.
    Shao N; Yuan K; Zhang Y; Yun Cheang T; Li J; Lin Y
    J BUON; 2018; 23(4):891-901. PubMed ID: 30358191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis.
    Ma J; Chen C; Liu S; Ji J; Wu D; Huang P; Wei D; Fan Z; Ren L
    Cancer Gene Ther; 2022 Nov; 29(11):1578-1589. PubMed ID: 35474355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KEGG-expressed genes and pathways in triple negative breast cancer: Protocol for a systematic review and data mining.
    Chen J; Liu C; Cen J; Liang T; Xue J; Zeng H; Zhang Z; Xu G; Yu C; Lu Z; Wang Z; Jiang J; Zhan X; Zeng J
    Medicine (Baltimore); 2020 May; 99(18):e19986. PubMed ID: 32358373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Differentially Expressed Genes (DEGs) Relevant to Prognosis of Ovarian Cancer by Use of Integrated Bioinformatics Analysis and Validation by Immunohistochemistry Assay.
    Zhang L; Sun L; Zhang B; Chen L
    Med Sci Monit; 2019 Dec; 25():9902-9912. PubMed ID: 31871312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulated cyclins may be novel genes for triple-negative breast cancer based on bioinformatic analysis.
    Lu Y; Yang G; Xiao Y; Zhang T; Su F; Chang R; Ling X; Bai Y
    Breast Cancer; 2020 Sep; 27(5):903-911. PubMed ID: 32338339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Genes with Prognostic Value in the Breast Cancer Microenvironment Using Bioinformatics Analysis.
    Ren H; Hu D; Mao Y; Su X
    Med Sci Monit; 2020 Apr; 26():e920212. PubMed ID: 32251269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of CXCR4 and CXCL10 as Potential Predictive Biomarkers in Triple Negative Breast Cancer (TNBC).
    Chuan T; Li T; Yi C
    Med Sci Monit; 2020 Jan; 26():e918281. PubMed ID: 31924747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker.
    Li C; Zhou D; Jiang X; Liu M; Tang H; Mei Z
    Gene; 2019 May; 698():9-18. PubMed ID: 30825595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers.
    Liu Y; Teng L; Fu S; Wang G; Li Z; Ding C; Wang H; Bi L
    BMC Cancer; 2021 May; 21(1):644. PubMed ID: 34053447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Hub Genes to Regulate Breast Cancer Spinal Metastases by Bioinformatics Analyses.
    He Y; Cao Y; Wang X; Jisiguleng W; Tao M; Liu J; Wang F; Chao L; Wang W; Li P; Fu H; Xing W; Zhu Z; Huan Y; Yuan H
    Comput Math Methods Med; 2021; 2021():5548918. PubMed ID: 34055036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of breast cancer hub genes and analysis of prognostic values using integrated bioinformatics analysis.
    Fang E; Zhang X
    Cancer Biomark; 2017 Dec; 21(1):373-381. PubMed ID: 29081411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Bioinformatics Data Analysis Reveals Prognostic Significance Of SIDT1 In Triple-Negative Breast Cancer.
    Wang Y; Li H; Ma J; Fang T; Li X; Liu J; Afewerky HK; Li X; Gao Q
    Onco Targets Ther; 2019; 12():8401-8410. PubMed ID: 31632087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel genes associated with a poor prognosis in pancreatic ductal adenocarcinoma via a bioinformatics analysis.
    Zhou J; Hui X; Mao Y; Fan L
    Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31311829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selected ideal natural ligand against TNBC by inhibiting CDC20, using bioinformatics and molecular biology.
    Liu N; Wang X; Zhu Z; Li D; Lv X; Chen Y; Xie H; Guo Z; Song D
    Aging (Albany NY); 2021 Oct; 13(20):23702-23725. PubMed ID: 34686627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.