These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31197676)
1. Measurement of film permeability in 2D foams. Forel E; Langevin D; Rio E Eur Phys J E Soft Matter; 2019 Jun; 42(6):75. PubMed ID: 31197676 [TBL] [Abstract][Full Text] [Related]
2. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams. Schimming CD; Durian DJ Phys Rev E; 2017 Sep; 96(3-1):032805. PubMed ID: 29346872 [TBL] [Abstract][Full Text] [Related]
3. On the influence of surfactant on the coarsening of aqueous foams. Briceño-Ahumada Z; Langevin D Adv Colloid Interface Sci; 2017 Jun; 244():124-131. PubMed ID: 26687804 [TBL] [Abstract][Full Text] [Related]
4. Experimentally testing a generalized coarsening model for individual bubbles in quasi-two-dimensional wet foams. Chieco AT; Durian DJ Phys Rev E; 2021 Jan; 103(1-1):012610. PubMed ID: 33601566 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions. Yu W; Zhou X; Kanj MY Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368 [TBL] [Abstract][Full Text] [Related]
6. Coarsening and mechanics in the bubble model for wet foams. Khakalo K; Baumgarten K; Tighe BP; Puisto A Phys Rev E; 2018 Jul; 98(1-1):012607. PubMed ID: 30110853 [TBL] [Abstract][Full Text] [Related]
7. Control of Ostwald ripening by using surfactants with high surface modulus. Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389 [TBL] [Abstract][Full Text] [Related]
8. A new model to describe small-angle neutron scattering from foams. Kühnhammer M; Braun L; Ludwig M; Soltwedel O; Chiappisi L; von Klitzing R J Appl Crystallogr; 2022 Aug; 55(Pt 4):758-768. PubMed ID: 35974727 [TBL] [Abstract][Full Text] [Related]
9. Ripening of a draining foam bubble. Louvet N; Rouyer F; Pitois O J Colloid Interface Sci; 2009 Jun; 334(1):82-6. PubMed ID: 19380148 [TBL] [Abstract][Full Text] [Related]
10. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams. Gay C; Rognon P; Reinelt D; Molino F Eur Phys J E Soft Matter; 2011 Jan; 34(1):2. PubMed ID: 21253804 [TBL] [Abstract][Full Text] [Related]
11. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams. Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273 [TBL] [Abstract][Full Text] [Related]
12. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization. Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923 [TBL] [Abstract][Full Text] [Related]
13. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content. Roth AE; Jones CD; Durian DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411 [TBL] [Abstract][Full Text] [Related]
14. Smectic foams. Trittel T; John T; Stannarius R Langmuir; 2010 Jun; 26(11):7899-904. PubMed ID: 20180603 [TBL] [Abstract][Full Text] [Related]
15. Foam coarsening under a steady shear: interplay between bubble rearrangement and film thinning dynamics. Saint-Jalmes A; Trégouët C Soft Matter; 2023 Mar; 19(11):2090-2098. PubMed ID: 36853265 [TBL] [Abstract][Full Text] [Related]
16. A review of aqueous foam in microscale. Anazadehsayed A; Rezaee N; Naser J; Nguyen AV Adv Colloid Interface Sci; 2018 Jun; 256():203-229. PubMed ID: 29747852 [TBL] [Abstract][Full Text] [Related]