These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31197704)

  • 21. Construction of high-density transposon mutant library of Staphylococcus aureus using bacteriophage ϕ11.
    Lee W
    J Microbiol; 2022 Dec; 60(12):1123-1129. PubMed ID: 36422842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for Tn-Seq Analysis in Acinetobacter baumannii.
    Gallagher LA
    Methods Mol Biol; 2019; 1946():115-134. PubMed ID: 30798550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transposon Insertion Site Sequencing in a Urinary Tract Model.
    Forsyth VS; Mobley HLT; Armbruster CE
    Methods Mol Biol; 2019; 2021():297-337. PubMed ID: 31309514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transposon Insertion Site Sequencing (TIS-Seq): An Efficient and High-Throughput Method for Determining Transposon Insertion Site(s) and Their Relative Abundances in a PiggyBac Transposon Mutant Pool by Next-Generation Sequencing.
    Veeranagouda Y; Didier M
    Curr Protoc Mol Biol; 2017 Oct; 120():21.35.1-21.35.11. PubMed ID: 28967994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries.
    Solaimanpour S; Sarmiento F; Mrázek J
    PLoS One; 2015; 10(5):e0126070. PubMed ID: 25938432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transposon Insertion Site Sequencing for Synthetic Lethal Screening.
    Yamaichi Y; Dörr T
    Methods Mol Biol; 2017; 1624():39-49. PubMed ID: 28842874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Querying Legionella Genomes Using Transposition-Sequencing.
    Hardy L; Charpentier X
    Methods Mol Biol; 2019; 1921():107-122. PubMed ID: 30694488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential Genes for In Vitro Growth of the Endophyte Herbaspirillum seropedicae SmR1 as Revealed by Transposon Insertion Site Sequencing.
    Rosconi F; de Vries SP; Baig A; Fabiano E; Grant AJ
    Appl Environ Microbiol; 2016 Nov; 82(22):6664-6671. PubMed ID: 27590816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Wide Fitness and Genetic Interactions Determined by Tn-seq, a High-Throughput Massively Parallel Sequencing Method for Microorganisms.
    van Opijnen T; Lazinski DW; Camilli A
    Curr Protoc Microbiol; 2015 Feb; 36():1E.3.1-1E.3.24. PubMed ID: 25641100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide Transposon Mutagenesis in Mycobacterium tuberculosis and Mycobacterium smegmatis.
    Majumdar G; Mbau R; Singh V; Warner DF; Dragset MS; Mukherjee R
    Methods Mol Biol; 2017; 1498():321-335. PubMed ID: 27709585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-Wide Determination of Gene Essentiality by Transposon Insertion Sequencing in Yeast Pichia pastoris.
    Zhu J; Gong R; Zhu Q; He Q; Xu N; Xu Y; Cai M; Zhou X; Zhang Y; Zhou M
    Sci Rep; 2018 Jul; 8(1):10223. PubMed ID: 29976927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Virulence Determinants During Host-Pathogen Interaction Using Tn-Seq Technology.
    Peek CT; Ibberson CB; Cassat JE
    Methods Mol Biol; 2020; 2069():155-175. PubMed ID: 31523773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons.
    Wetmore KM; Price MN; Waters RJ; Lamson JS; He J; Hoover CA; Blow MJ; Bristow J; Butland G; Arkin AP; Deutschbauer A
    mBio; 2015 May; 6(3):e00306-15. PubMed ID: 25968644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-Wide Essentiality Analysis of
    Rifat D; Chen L; Kreiswirth BN; Nuermberger EL
    mBio; 2021 Jun; 12(3):e0104921. PubMed ID: 34126767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable determination of transposon insertion site in prokaryotes by direct sequencing.
    Qimron U; Madar N; Ascarelli-Goell R; Elgrably-Weiss M; Altuvia S; Porgador A
    J Microbiol Methods; 2003 Jul; 54(1):137-40. PubMed ID: 12732433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Technical considerations for cost-effective transposon directed insertion-site sequencing (TraDIS).
    Kyono Y; Tolwinski M; Flowers SA
    Sci Rep; 2024 Mar; 14(1):6756. PubMed ID: 38514891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of a Sequence-Defined Transposon Mutant Library in Staphylococcus aureus.
    Endres JL; Yajjala VK; Fey PD; Bayles KW
    Methods Mol Biol; 2019; 2016():29-37. PubMed ID: 31197706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-based identification of conditionally-essential genes from transposon-insertion sequencing data.
    Sarsani V; Aldikacti B; He S; Zeinert R; Chien P; Flaherty P
    PLoS Comput Biol; 2022 Mar; 18(3):e1009273. PubMed ID: 35255084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms.
    van Opijnen T; Camilli A
    Curr Protoc Microbiol; 2010 Nov; Chapter 1():Unit1E.3. PubMed ID: 21053251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.
    de Muinck EJ; Trosvik P; Gilfillan GD; Hov JR; Sundaram AYM
    Microbiome; 2017 Jul; 5(1):68. PubMed ID: 28683838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.