These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31197789)

  • 1. Live-Cell Imaging of Fluorescently Tagged Phloem Proteins with Confocal Microscopy.
    Cayla T; Le Hir R; Dinant S
    Methods Mol Biol; 2019; 2014():95-108. PubMed ID: 31197789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live imaging of companion cells and sieve elements in Arabidopsis leaves.
    Cayla T; Batailler B; Le Hir R; Revers F; Anstead JA; Thompson GA; Grandjean O; Dinant S
    PLoS One; 2015; 10(2):e0118122. PubMed ID: 25714357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phloem unloading of potato virus X movement proteins is regulated by virus and host factors.
    Mekuria T; Bamunusinghe D; Payton M; Verchot-Lubicz J
    Mol Plant Microbe Interact; 2008 Aug; 21(8):1106-17. PubMed ID: 18616407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging.
    Kurihara D; Mizuta Y; Sato Y; Higashiyama T
    Development; 2015 Dec; 142(23):4168-79. PubMed ID: 26493404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-Resolution Microscopy of Phloem Proteins.
    Stanfield RC; Schulz A
    Methods Mol Biol; 2019; 2014():83-94. PubMed ID: 31197788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.
    Ernst AM; Jekat SB; Zielonka S; Müller B; Neumann U; Rüping B; Twyman RM; Krzyzanek V; Prüfer D; Noll GA
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):E1980-9. PubMed ID: 22733783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo quantification of cell coupling in plants with different phloem-loading strategies.
    Liesche J; Schulz A
    Plant Physiol; 2012 May; 159(1):355-65. PubMed ID: 22422939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Symplasmic Phloem Loading Capacity with Live-Cell Microscopy.
    Martens HJ; Gao C; Liesche J
    Methods Mol Biol; 2019; 2014():215-221. PubMed ID: 31197799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development.
    Noll GA; Fontanellaz ME; Rüping B; Ashoub A; van Bel AJ; Fischer R; Knoblauch M; Prüfer D
    Plant Mol Biol; 2007 Oct; 65(3):285-94. PubMed ID: 17694275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral phloem-mobile probes: properties and applications.
    Knoblauch M; Vendrell M; de Leau E; Paterlini A; Knox K; Ross-Elliot T; Reinders A; Brockman SA; Ward J; Oparka K
    Plant Physiol; 2015 Apr; 167(4):1211-20. PubMed ID: 25653316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.
    Cui Y; Gao C; Zhao Q; Jiang L
    Methods Mol Biol; 2016; 1474():113-23. PubMed ID: 27515077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.
    Hebelstrup KH; Østergaard-Jensen E; Hill RD
    Methods Enzymol; 2008; 437():595-604. PubMed ID: 18433649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated live microscopy to study mitotic gene function in fluorescent reporter cell lines.
    Schmitz MH; Gerlich DW
    Methods Mol Biol; 2009; 545():113-34. PubMed ID: 19475385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the poplar phloem proteome and its response to leaf wounding.
    Dafoe NJ; Zamani A; Ekramoddoullah AK; Lippert D; Bohlmann J; Constabel CP
    J Proteome Res; 2009 May; 8(5):2341-50. PubMed ID: 19245218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Fluorescence Microscopy Imaging: Quantitative Scanning-Free Confocal Fluorescence Microscopy for the Characterization of Fast Dynamic Processes in Live Cells.
    Krmpot AJ; Nikolić SN; Oasa S; Papadopoulos DK; Vitali M; Oura M; Mikuni S; Thyberg P; Tisa S; Kinjo M; Nilsson L; Terenius L; Rigler R; Vukojević V
    Anal Chem; 2019 Sep; 91(17):11129-11137. PubMed ID: 31364842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlative imaging of fluorescent proteins in resin-embedded plant material.
    Bell K; Mitchell S; Paultre D; Posch M; Oparka K
    Plant Physiol; 2013 Apr; 161(4):1595-603. PubMed ID: 23457228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana.
    Edwards J; Martin AP; Andriunas F; Offler CE; Patrick JW; McCurdy DW
    Plant J; 2010 Aug; 63(4):651-61. PubMed ID: 20545890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Phloem Transport Velocity on a Tissue Level Using a Phloem-Mobile Dye.
    Savage JA; Zwieniecki MA
    Methods Mol Biol; 2019; 2014():203-211. PubMed ID: 31197798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: Semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis.
    Nguyen ST; McCurdy DW
    BMC Plant Biol; 2015 Apr; 15():109. PubMed ID: 25899055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis P-protein filament formation requires both AtSEOR1 and AtSEOR2.
    Anstead JA; Froelich DR; Knoblauch M; Thompson GA
    Plant Cell Physiol; 2012 Jun; 53(6):1033-42. PubMed ID: 22470058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.