These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31197791)

  • 1. Studying Phloem Loading with EDTA-Facilitated Phloem Exudate Collection and Analysis.
    Xu Q; Ren Y; Liesche J
    Methods Mol Biol; 2019; 2014():125-133. PubMed ID: 31197791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Long-Distance Carbon Partitioning from Photosynthetic Source Leaves to Heterotrophic Sink Organs with Photoassimilated [
    Yadav UP; Shaikh MA; Evers J; Regmi KC; Gaxiola RA; Ayre BG
    Methods Mol Biol; 2019; 2014():223-233. PubMed ID: 31197800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexoses as phloem transport sugars: the end of a dogma?
    van Bel AJ; Hess PH
    J Exp Bot; 2008; 59(2):261-72. PubMed ID: 18332226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Above and below ground carbohydrate allocation differs between ash (Fraxinus excelsior L.) and beech (Fagus sylvatica L.).
    Thoms R; Köhler M; Gessler A; Gleixner G
    PLoS One; 2017; 12(9):e0184247. PubMed ID: 28934229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar Transporters in Plants: New Insights and Discoveries.
    Julius BT; Leach KA; Tran TM; Mertz RA; Braun DM
    Plant Cell Physiol; 2017 Sep; 58(9):1442-1460. PubMed ID: 28922744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of SUT1 and SUT2 Sugar Transporters in the Impairment of Sugar Transport and Changes in Phloem Exudate Contents in Phytoplasma-Infected Plants.
    Marco F; Batailler B; Thorpe MR; Razan F; Le Hir R; Vilaine F; Bouchereau A; Martin-Magniette ML; Eveillard S; Dinant S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33451049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.
    Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN
    Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratio of sugar concentrations in the phloem sap and the cytosol of mesophyll cells in different tree species as an indicator of the phloem loading mechanism.
    Fink D; Dobbelstein E; Barbian A; Lohaus G
    Planta; 2018 Sep; 248(3):661-673. PubMed ID: 29882156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of Symplasmic Phloem Loading Capacity with Live-Cell Microscopy.
    Martens HJ; Gao C; Liesche J
    Methods Mol Biol; 2019; 2014():215-221. PubMed ID: 31197799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulating the sucrose transporter VpSUT1 in Verbascum phoeniceum does not inhibit phloem loading.
    Zhang C; Turgeon R
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18849-54. PubMed ID: 19846784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of phloem loading.
    Zhang C; Turgeon R
    Curr Opin Plant Biol; 2018 Jun; 43():71-75. PubMed ID: 29448176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucrose transport in the phloem: integrating root responses to phosphorus starvation.
    Hammond JP; White PJ
    J Exp Bot; 2008; 59(1):93-109. PubMed ID: 18212031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning.
    Ma Y; Slewinski TL; Baker RF; Braun DM
    Plant Physiol; 2009 Jan; 149(1):181-94. PubMed ID: 18923021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloem loading in rice leaves depends strongly on the apoplastic pathway.
    Wang G; Wu Y; Ma L; Lin Y; Hu Y; Li M; Li W; Ding Y; Chen L
    J Exp Bot; 2021 May; 72(10):3723-3738. PubMed ID: 33624763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detours on the phloem sugar highway: stem carbon storage and remobilization.
    Furze ME; Trumbore S; Hartmann H
    Curr Opin Plant Biol; 2018 Jun; 43():89-95. PubMed ID: 29522989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose transporters and plasmodesmal regulation in passive phloem loading.
    Liesche J
    J Integr Plant Biol; 2017 May; 59(5):311-321. PubMed ID: 28429873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin and composition of cucurbit "phloem" exudate.
    Zhang C; Yu X; Ayre BG; Turgeon R
    Plant Physiol; 2012 Apr; 158(4):1873-82. PubMed ID: 22331409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phloem physics: mechanisms, constraints, and perspectives.
    Jensen KH
    Curr Opin Plant Biol; 2018 Jun; 43():96-100. PubMed ID: 29660560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar concentrations and expression of SUTs suggest active phloem loading in tall trees of Fagus sylvatica and Quercus robur.
    Miehe W; Czempik L; Klebl F; Lohaus G
    Tree Physiol; 2023 May; 43(5):805-816. PubMed ID: 36579830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.