BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31197959)

  • 1. Comparison of methods for assigning the material properties of the distraction callus in computational models.
    Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME
    Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation.
    Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J
    Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization via nanoindentation of the woven bone developed during bone transport.
    Mora-Macías J; Pajares A; Miranda P; Domínguez J; Reina-Romo E
    J Mech Behav Biomed Mater; 2017 Oct; 74():236-244. PubMed ID: 28623826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanobiology of Bone Consolidation During Distraction Osteogenesis: Bone Lengthening Vs. Bone Transport.
    Blázquez-Carmona P; Mora-Macías J; Morgaz J; Fernández-Sarmiento JA; Domínguez J; Reina-Romo E
    Ann Biomed Eng; 2021 Apr; 49(4):1209-1221. PubMed ID: 33111968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.
    Vetter A; Liu Y; Witt F; Manjubala I; Sander O; Epari DR; Fratzl P; Duda GN; Weinkamer R
    J Biomech; 2011 Feb; 44(3):517-23. PubMed ID: 20965507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis.
    Boccaccio A; Pappalettere C; Kelly DJ
    Ann Biomed Eng; 2007 Nov; 35(11):1940-60. PubMed ID: 17768683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of strain artefacts arising from a pre-defined callus domain in models of bone healing mechanobiology.
    Wilson CJ; Schuetz MA; Epari DR
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1129-41. PubMed ID: 25687769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined in vivo/in silico study of mechanobiological mechanisms during endochondral ossification in bone healing.
    Witt F; Petersen A; Seidel R; Vetter A; Weinkamer R; Duda GN
    Ann Biomed Eng; 2011 Oct; 39(10):2531-41. PubMed ID: 21692004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress distribution on the mandibular condyle and the distraction area in distraction osteogenesis by finite element analysis.
    Li P; Long J; Tang W; Li J; Liang R; Tian DW
    J Craniofac Surg; 2013 May; 24(3):1031-7. PubMed ID: 23714940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating lateral distraction osteogenesis.
    Niemeyer F; Claes L; Ignatius A; Meyers N; Simon U
    PLoS One; 2018; 13(3):e0194500. PubMed ID: 29543908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo study of human mandibular distraction osteogenesis. Part II: Determination of callus mechanical properties.
    Bonnet AS; Dubois G; Lipinski P; Schouman T
    Acta Bioeng Biomech; 2013; 15(1):11-8. PubMed ID: 23957392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo.
    Mora-Macías J; Reina-Romo E; Domínguez J
    Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of mechanical environment on bone healing and distraction osteogenesis.
    Saunders MM; Lee JS
    Atlas Oral Maxillofac Surg Clin North Am; 2008 Sep; 16(2):147-58. PubMed ID: 18710689
    [No Abstract]   [Full Text] [Related]  

  • 17. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis.
    Shefelbine SJ; Simon U; Claes L; Gold A; Gabet Y; Bab I; Müller R; Augat P
    Bone; 2005 Mar; 36(3):480-8. PubMed ID: 15777656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using 3D finite element models verified the importance of callus material and microstructure in biomechanics restoration during bone defect repair.
    Li C; Tan R; Guo Y; Li S
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):83-90. PubMed ID: 29359598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of human bone fracture healing affected by different conditions of initial healing stage.
    Ghiasi MS; Chen JE; Rodriguez EK; Vaziri A; Nazarian A
    BMC Musculoskelet Disord; 2019 Nov; 20(1):562. PubMed ID: 31767007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.