BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

980 related articles for article (PubMed ID: 31198654)

  • 81. Differential patterns of HPA activity and reactivity in adult posttraumatic stress disorder and major depressive disorder.
    Handwerger K
    Harv Rev Psychiatry; 2009; 17(3):184-205. PubMed ID: 19499418
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Posttraumatic stress disorder: A metabolic disorder in disguise?
    Michopoulos V; Vester A; Neigh G
    Exp Neurol; 2016 Oct; 284(Pt B):220-229. PubMed ID: 27246996
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Limbic response to stress linking life trauma and hypothalamus-pituitary-adrenal axis function.
    Seo D; Rabinowitz AG; Douglas RJ; Sinha R
    Psychoneuroendocrinology; 2019 Jan; 99():38-46. PubMed ID: 30172968
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Stress and the HPA axis: role of glucocorticoids in alcohol dependence.
    Stephens MA; Wand G
    Alcohol Res; 2012; 34(4):468-83. PubMed ID: 23584113
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The effect of pre-existing alcohol use disorder on the risk of developing posttraumatic stress disorder: results from a longitudinal national representative sample.
    Balachandran T; Cohen G; Le Foll B; Rehm J; Hassan AN
    Am J Drug Alcohol Abuse; 2020; 46(2):232-240. PubMed ID: 31860361
    [No Abstract]   [Full Text] [Related]  

  • 86. Sex differences in the traumatic stress response: PTSD symptoms in women recapitulated in female rats.
    Pooley AE; Benjamin RC; Sreedhar S; Eagle AL; Robison AJ; Mazei-Robison MS; Breedlove SM; Jordan CL
    Biol Sex Differ; 2018 Jul; 9(1):31. PubMed ID: 29976248
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Hair cortisol levels in posttraumatic stress disorder and metabolic syndrome.
    van den Heuvel LL; Stalder T; du Plessis S; Suliman S; Kirschbaum C; Seedat S
    Stress; 2020 Sep; 23(5):577-589. PubMed ID: 32008379
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder.
    Carlson HN; Weiner JL
    Int Rev Neurobiol; 2021; 157():69-142. PubMed ID: 33648676
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment.
    Daskalakis NP; Lehrner A; Yehuda R
    Endocrinol Metab Clin North Am; 2013 Sep; 42(3):503-13. PubMed ID: 24011883
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Neuroendocrine response to CRF stimulation in veterans with and without PTSD in consideration of war zone era.
    Golier JA; Caramanica K; Yehuda R
    Psychoneuroendocrinology; 2012 Mar; 37(3):350-7. PubMed ID: 21813244
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The effects of early trauma and the FKBP5 gene on PTSD and the HPA axis in a clinical sample of Gulf War veterans.
    Young DA; Inslicht SS; Metzler TJ; Neylan TC; Ross JA
    Psychiatry Res; 2018 Dec; 270():961-966. PubMed ID: 29576410
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Early neglect is a key determinant of adult hair cortisol concentration and is associated with increased vulnerability to trauma in a transdiagnostic sample.
    Schalinski I; Teicher MH; Rockstroh B
    Psychoneuroendocrinology; 2019 Oct; 108():35-42. PubMed ID: 31226659
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Translating the psychobiology of post-traumatic stress disorder into clinically useful analogy.
    Scott MJ; Stradling SG
    Br J Med Psychol; 2001 Jun; 74(Pt 2):249-54. PubMed ID: 11453175
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: a systematic review and meta-analysis.
    Morris MC; Compas BE; Garber J
    Clin Psychol Rev; 2012 Jun; 32(4):301-15. PubMed ID: 22459791
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Neurobiology of early life traumatic stress and trauma: Prolonged neuroendocrine dysregulation as a neurodevelopmental risk factor].
    Gkesoglou T; Pervanidou P; Bozikas VP; Agorastos A
    Psychiatriki; 2023 Jul; 34(2):122-132. PubMed ID: 35255464
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Alcohol, stress, and glucocorticoids: From risk to dependence and relapse in alcohol use disorders.
    Blaine SK; Sinha R
    Neuropharmacology; 2017 Aug; 122():136-147. PubMed ID: 28159647
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Co-Occurring Post-Traumatic Stress Disorder and Alcohol Use Disorder in U.S. Military and Veteran Populations.
    Dworkin ER; Bergman HE; Walton TO; Walker DD; Kaysen DL
    Alcohol Res; 2018; 39(2):161-169. PubMed ID: 31198655
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Associations between early life stress and anterior pituitary gland volume development during late childhood.
    Farrow P; Simmons JG; Pozzi E; Díaz-Arteche C; Richmond S; Bray K; Schwartz O; Whittle S
    Psychoneuroendocrinology; 2020 Dec; 122():104868. PubMed ID: 33068951
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Biological basis of posttraumatic stress disorder].
    Graef FG
    Braz J Psychiatry; 2003 Jun; 25 Suppl 1():21-4. PubMed ID: 14523506
    [TBL] [Abstract][Full Text] [Related]  

  • 100. FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.
    Lieberman R; Armeli S; Scott DM; Kranzler HR; Tennen H; Covault J
    Am J Med Genet B Neuropsychiatr Genet; 2016 Sep; 171(6):879-87. PubMed ID: 27196697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.