BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 31198911)

  • 1. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions.
    Xu T; Sun K; Gao D; Li C; Hu X; Chen G
    Chem Commun (Camb); 2019 Jun; 55(53):7651-7654. PubMed ID: 31198911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al
    Chen B; Yang X; Xu Y; Hu S; Zeng X; Liu Y; Tan KB; Huang J; Zhan G
    Nanoscale; 2022 Nov; 14(42):15749-15759. PubMed ID: 36226736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-organic frameworks as selectivity regulators for hydrogenation reactions.
    Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z
    Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition.
    Gao Z; Qin Y
    Acc Chem Res; 2017 Sep; 50(9):2309-2316. PubMed ID: 28787132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem Catalysis of Ammonia Borane Dehydrogenation and Phenylacetylene Hydrogenation Catalyzed by CeO
    Li X; Song L; Gao D; Kang B; Zhao H; Li C; Hu X; Chen G
    Chemistry; 2020 Apr; 26(19):4419-4424. PubMed ID: 32027761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst.
    Leus K; Dendooven J; Tahir N; Ramachandran RK; Meledina M; Turner S; Van Tendeloo G; Goeman JL; Van der Eycken J; Detavernier C; Van Der Voort P
    Nanomaterials (Basel); 2016 Mar; 6(3):. PubMed ID: 28344301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Construction of Pt-Ni NF@Ni-MOF-74 for Selective Hydrogenation of p-Nitrostyrene by Ammonia Borane.
    Xu J; Zhu J; Liu Y; Long Y; Feng J; Yang X; Zhang Y; Song S; Zhang H
    Chemistry; 2020 Oct; 26(55):12539-12543. PubMed ID: 32510668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.
    Lemaire PC; Zhao J; Williams PS; Walls HJ; Shepherd SD; Losego MD; Peterson GW; Parsons GN
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9514-22. PubMed ID: 26999431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Encapsulation of Flower-like Rh-Ni Alloys with MOFs via Tunable Template Dealloying for Enhanced Selective Hydrogenation of Alkyne.
    Chen L; Li H; Zhan W; Cao Z; Chen J; Jiang Q; Jiang Y; Xie Z; Kuang Q; Zheng L
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31059-31066. PubMed ID: 27783897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UiO-66-NH
    Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition.
    Cao K; Zhu Q; Shan B; Chen R
    Sci Rep; 2015 Feb; 5():8470. PubMed ID: 25683469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions.
    Gao Z; Dong M; Wang G; Sheng P; Wu Z; Yang H; Zhang B; Wang G; Wang J; Qin Y
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):9006-10. PubMed ID: 26150352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective palladium-loaded MIL-101 catalysts.
    Hermannsdörfer J; Kempe R
    Chemistry; 2011 Jul; 17(29):8071-7. PubMed ID: 21678515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.
    Wang M; Gao Z; Zhang B; Yang H; Qiao Y; Chen S; Ge H; Zhang J; Qin Y
    Chemistry; 2016 Jun; 22(25):8438-43. PubMed ID: 27061428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of nested coaxial multiple-walled nanotubes by atomic layer deposition.
    Gu D; Baumgart H; Abdel-Fattah TM; Namkoong G
    ACS Nano; 2010 Feb; 4(2):753-8. PubMed ID: 20085347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.
    Lu J; Elam JW; Stair PC
    Acc Chem Res; 2013 Aug; 46(8):1806-15. PubMed ID: 23480735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rational design of sandwich-like MnO
    Zhang J; Li T; Wang CA; Luo JL
    Nanoscale; 2019 Apr; 11(14):6776-6783. PubMed ID: 30907906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion.
    Zhang H; Gu XK; Canlas C; Kropf AJ; Aich P; Greeley JP; Elam JW; Meyers RJ; Dumesic JA; Stair PC; Marshall CL
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12132-6. PubMed ID: 25251418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide.
    Sampson MD; Emery JD; Pellin MJ; Martinson ABF
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33429-33436. PubMed ID: 28379011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.
    Weber MJ; Verheijen MA; Bol AA; Kessels WM
    Nanotechnology; 2015 Mar; 26(9):094002. PubMed ID: 25676208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.