BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31198986)

  • 1. Supernumerary scutes verify a segment-dependent model of the horny shell development in turtles.
    Cherepanov G; Malashichev Y; Danilov I
    J Anat; 2019 Oct; 235(4):836-846. PubMed ID: 31198986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin and loss of periodic patterning in the turtle shell.
    Moustakas-Verho JE; Zimm R; Cebra-Thomas J; Lempiäinen NK; Kallonen A; Mitchell KL; Hämäläinen K; Salazar-Ciudad I; Jernvall J; Gilbert SF
    Development; 2014 Aug; 141(15):3033-9. PubMed ID: 25053434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Causation of Turtle Scute Anomalies in ovo and in silico.
    Zimm R; Bentley BP; Wyneken J; Moustakas-Verho JE
    Integr Comp Biol; 2017 Dec; 57(6):1303-1311. PubMed ID: 28992039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The integumental appendages of the turtle shell: an evo-devo perspective.
    Moustakas-Verho JE; Cherepanov GO
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):221-9. PubMed ID: 25877335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turing's turtles all the way down: A conserved role of EDAR in the carapacial ridge suggests a deep homology of prepatterns across ectodermal appendages.
    Zimm R; Oberdick D; Gnetneva A; Schneider P; Cebra-Thomas J; Moustakas-Verho JE
    Anat Rec (Hoboken); 2023 Jun; 306(6):1201-1213. PubMed ID: 36239299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shell variability in the stem turtles
    Szczygielski T; Słowiak J; Dróżdż D
    PeerJ; 2018; 6():e6134. PubMed ID: 30595986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No evidence of selection against anomalous scute arrangements between juvenile and adult sea turtles in Florida.
    Bentley BP; McGlashan JK; Bresette MJ; Wyneken J
    J Morphol; 2021 Feb; 282(2):173-184. PubMed ID: 33111991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation in the epidermis of chelonians and growth of the horny scutes.
    Alibardi L
    J Morphol; 2005 Jul; 265(1):52-69. PubMed ID: 15880409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogenetic and constructional differences of the carapace of aquatic and terrestrial turtles and their evolutionary significance.
    Cherepanov G
    J Morphol; 2019 Oct; 280(10):1571-1581. PubMed ID: 31411770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural and immunohistochemical observations on the process of horny growth in chelonian shells.
    Alibardi L
    Acta Histochem; 2006; 108(2):149-62. PubMed ID: 16733064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.
    Pascual-Anaya J; Hirasawa T; Sato I; Kuraku S; Kuratani S
    Int J Dev Biol; 2014; 58(10-12):743-50. PubMed ID: 26154315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the egg incubation environment on turtle carapace development.
    Cordero GA; Birk K; Ruane S; Dinkelacker SA; Janzen FJ
    Evol Dev; 2023 Mar; 25(2):153-169. PubMed ID: 36373204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging from the rib: resolving the turtle controversies.
    Rice R; Riccio P; Gilbert SF; Cebra-Thomas J
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):208-20. PubMed ID: 25675951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea).
    Crossley DA; Crossley JL; Smith C; Harfush M; Sánchez-Sánchez H; Garduño-Paz MV; Méndez-Sánchez JF
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Sep; 211():69-76. PubMed ID: 28642099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The postembryonic transformation of the shell in emydine box turtles.
    Cordero GA; Stearns S; Quinteros K; Berns CM; Binz SM; Janzen F
    Evol Dev; 2019 Nov; 21(6):297-310. PubMed ID: 31441599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the shell development of hard- and soft-shelled turtles.
    Nagashima H; Shibata M; Taniguchi M; Ueno S; Kamezaki N; Sato N
    J Anat; 2014 Jul; 225(1):60-70. PubMed ID: 24754673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carapace asymmetry: A possible biomarker for metal accumulation in adult olive Ridleys marine turtles?
    Cortés-Gómez AA; Romero D; Girondot M
    Mar Pollut Bull; 2018 Apr; 129(1):92-101. PubMed ID: 29680573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pilot Study of Mercury Distribution in the Carapace of Four Species of Sea Turtles from Northeastern Brazil.
    Barrios-Rodríguez CA; de Lacerda LD; Fernandes-Bezerra M
    Bull Environ Contam Toxicol; 2023 May; 110(6):99. PubMed ID: 37243788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex Differences and the Heritability of Scute Pattern Abnormalities in the Green Sea Turtle from the Ogasawara Archipelago, Japan.
    Kobayashi S; Morimoto Y; Kondo S; Sato T; Suganuma H; Arai K; Watanabe G
    Zoolog Sci; 2017 Aug; 34(4):281-286. PubMed ID: 28770677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.
    Cordero GA; Quinteros K
    Biol Lett; 2015 Apr; 11(4):20150022. PubMed ID: 25878046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.