BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 31199215)

  • 1. Evolution of pig intestinal stem cells from birth to weaning.
    Verdile N; Mirmahmoudi R; Brevini TAL; Gandolfi F
    Animal; 2019 Dec; 13(12):2830-2839. PubMed ID: 31199215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOPX
    Stewart AS; Schaaf CR; Luff JA; Freund JM; Becker TC; Tufts SR; Robertson JB; Gonzalez LM
    Am J Physiol Gastrointest Liver Physiol; 2021 Nov; 321(5):G588-G602. PubMed ID: 34549599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via Wnt/
    Wang LX; Zhu F; Li JZ; Li YL; Ding XQ; Yin J; Xiong X; Yang HS
    Animal; 2020 Apr; 14(4):790-798. PubMed ID: 31650938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paneth cell-derived iNOS is required to maintain homeostasis in the intestinal stem cell niche.
    Huang L; Xu Z; Lei X; Huang Y; Tu S; Xu L; Xia J; Liu D
    J Transl Med; 2023 Nov; 21(1):852. PubMed ID: 38007452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early weaning causes small intestinal atrophy by inhibiting the activity of intestinal stem cells: involvement of Wnt/β-catenin signaling.
    Tian J; Li Y; Bao X; Yang F; Tang X; Jiang Q; Yin Y; Yao K
    Stem Cell Res Ther; 2023 Apr; 14(1):65. PubMed ID: 37020258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation.
    Van Landeghem L; Santoro MA; Krebs AE; Mah AT; Dehmer JJ; Gracz AD; Scull BP; McNaughton K; Magness ST; Lund PK
    Am J Physiol Gastrointest Liver Physiol; 2012 May; 302(10):G1111-32. PubMed ID: 22361729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease.
    Schaaf CR; Polkoff KM; Carter A; Stewart AS; Sheahan B; Freund J; Ginzel J; Snyder JC; Roper J; Piedrahita JA; Gonzalez LM
    FASEB J; 2023 Jun; 37(6):e22975. PubMed ID: 37159340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reserve Stem Cells in Intestinal Homeostasis and Injury.
    Bankaitis ED; Ha A; Kuo CJ; Magness ST
    Gastroenterology; 2018 Nov; 155(5):1348-1361. PubMed ID: 30118745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis.
    Rubin DC; Swietlicki E; Roth KA; Gordon JI
    J Biol Chem; 1992 Jul; 267(21):15122-33. PubMed ID: 1634547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells.
    Kishida K; Pearce SC; Yu S; Gao N; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2017 Jun; 312(6):G592-G605. PubMed ID: 28336548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse Label-Retaining Cells Are Molecularly and Functionally Distinct From Reserve Intestinal Stem Cells.
    Li N; Nakauka-Ddamba A; Tobias J; Jensen ST; Lengner CJ
    Gastroenterology; 2016 Aug; 151(2):298-310.e7. PubMed ID: 27237597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells.
    Lin G; Xu N; Xi R
    Nature; 2008 Oct; 455(7216):1119-23. PubMed ID: 18806781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations.
    Van Landeghem L; Santoro MA; Mah AT; Krebs AE; Dehmer JJ; McNaughton KK; Helmrath MA; Magness ST; Lund PK
    FASEB J; 2015 Jul; 29(7):2828-42. PubMed ID: 25837582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Aged Dysfunctional Intestinal Stem Cells.
    Nalapareddy K; Geiger H
    Methods Mol Biol; 2020; 2171():41-52. PubMed ID: 32705634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sox9, Hopx, and survivin and tuft cell marker DCLK1 expression in normal canine intestine and in intestinal adenoma and adenocarcinoma.
    Reineking W; Schauerte IE; Junginger J; Hewicker-Trautwein M
    Vet Pathol; 2022 May; 59(3):415-426. PubMed ID: 35220825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay.
    Wang F; Scoville D; He XC; Mahe MM; Box A; Perry JM; Smith NR; Lei NY; Davies PS; Fuller MK; Haug JS; McClain M; Gracz AD; Ding S; Stelzner M; Dunn JC; Magness ST; Wong MH; Martin MG; Helmrath M; Li L
    Gastroenterology; 2013 Aug; 145(2):383-95.e1-21. PubMed ID: 23644405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric cell division-dominant neutral drift model for normal intestinal stem cell homeostasis.
    Sei Y; Feng J; Chow CC; Wank SA
    Am J Physiol Gastrointest Liver Physiol; 2019 Jan; 316(1):G64-G74. PubMed ID: 30359083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Death receptor 5 is required for intestinal stem cell activity during intestinal epithelial renewal at homoeostasis.
    Liu J; Liu K; Wang Y; Shi Z; Xu R; Zhang Y; Li J; Liu C; Xue B
    Cell Death Dis; 2024 Jan; 15(1):27. PubMed ID: 38199990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium.
    Gasnier M; Lim HYG; Barker N
    Curr Top Dev Biol; 2023; 153():281-326. PubMed ID: 36967198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of intestinal epithelial stem cells during murine development.
    Dehmer JJ; Garrison AP; Speck KE; Dekaney CM; Van Landeghem L; Sun X; Henning SJ; Helmrath MA
    PLoS One; 2011; 6(11):e27070. PubMed ID: 22102874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.