These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31199248)

  • 1. Faster Gait Speeds Reduce Alpha and Beta EEG Spectral Power From Human Sensorimotor Cortex.
    Nordin AD; Hairston WD; Ferris DP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):842-853. PubMed ID: 31199248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolating gait-related movement artifacts in electroencephalography during human walking.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    Neuroimage; 2011 Jan; 54(2):1289-96. PubMed ID: 20832484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion and Muscle Artifact Removal Validation Using an Electrical Head Phantom, Robotic Motion Platform, and Dual Layer Mobile EEG.
    Richer N; Downey RJ; Hairston WD; Ferris DP; Nordin AD
    IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1825-1835. PubMed ID: 32746290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking.
    Jacobsen NA; Ferris DP
    J Physiol; 2023 Sep; 601(17):3921-3944. PubMed ID: 37522890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking.
    Snyder KL; Kline JE; Huang HJ; Ferris DP
    Front Hum Neurosci; 2015; 9():639. PubMed ID: 26648858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle.
    Seeber M; Scherer R; Wagner J; Solis-Escalante T; Müller-Putz GR
    Neuroimage; 2015 May; 112():318-326. PubMed ID: 25818687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocortical activity distinguishes between uphill and level walking in humans.
    Bradford JC; Lukos JR; Ferris DP
    J Neurophysiol; 2016 Feb; 115(2):958-66. PubMed ID: 26683062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    J Neural Eng; 2016 Jun; 13(3):036014. PubMed ID: 27137818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance-based approach for movement artifact removal from electroencephalographic data recorded during locomotion.
    Arad E; Bartsch RP; Kantelhardt JW; Plotnik M
    PLoS One; 2018; 13(5):e0197153. PubMed ID: 29768471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of movement artifact from high-density EEG recorded during walking and running.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    J Neurophysiol; 2010 Jun; 103(6):3526-34. PubMed ID: 20410364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human electrocortical dynamics while stepping over obstacles.
    Nordin AD; Hairston WD; Ferris DP
    Sci Rep; 2019 Mar; 9(1):4693. PubMed ID: 30886202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocortical correlates of human level-ground, slope, and stair walking.
    Luu TP; Brantley JA; Nakagome S; Zhu F; Contreras-Vidal JL
    PLoS One; 2017; 12(11):e0188500. PubMed ID: 29190704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of corticospinal motor control during overground and treadmill walking in humans.
    Roeder L; Boonstra TW; Smith SS; Kerr GK
    J Neurophysiol; 2018 Sep; 120(3):1017-1031. PubMed ID: 29847229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricted vision increases sensorimotor cortex involvement in human walking.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    J Neurophysiol; 2017 Oct; 118(4):1943-1951. PubMed ID: 28679843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and real-time removal of motion artifacts from EEG signals.
    Kilicarslan A; Contreras Vidal JL
    J Neural Eng; 2019 Sep; 16(5):056027. PubMed ID: 31220818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG time-frequency analysis provides arguments for arm swing support in human gait control.
    Weersink JB; Maurits NM; de Jong BM
    Gait Posture; 2019 May; 70():71-78. PubMed ID: 30826690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-electrode motion artifact cancellation for mobile electroencephalography.
    Nordin AD; Hairston WD; Ferris DP
    J Neural Eng; 2018 Oct; 15(5):056024. PubMed ID: 30074489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings.
    Jacobsen NSJ; Blum S; Witt K; Debener S
    Eur J Neurosci; 2021 Dec; 54(12):8421-8440. PubMed ID: 32909315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.