These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3119936)

  • 21. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.
    Schuler AM; Wood PA
    ILAR J; 2002; 43(2):57-65. PubMed ID: 11917157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progesterone biosynthesis supported by fatty acid oxidation in the mitochondrial fraction of human term placenta.
    Tiałowska B; Klimek J; Zelewski L
    Acta Biochim Pol; 1983; 30(1):11-21. PubMed ID: 6868904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long chain fatty acid oxidation defects in children: importance of detection and treatment options.
    Hayes B; Lynch B; O'Keefe M; Monavari AA; Treacy EP
    Ir J Med Sci; 2007 Sep; 176(3):189-92. PubMed ID: 17431731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.
    Harper RD; Saggerson ED
    Biochem J; 1975 Dec; 152(3):485-94. PubMed ID: 1227502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of carnitine esters by radio-high performance liquid chromatography in cultured skin fibroblasts from patients with mitochondrial fatty acid oxidation disorders.
    Schmidt-Sommerfeld E; Bobrowski PJ; Penn D; Rhead WJ; Wanders RJ; Bennett MJ
    Pediatr Res; 1998 Aug; 44(2):210-4. PubMed ID: 9702916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The changing face of disorders of fatty acid oxidation.
    Vockley J
    Mayo Clin Proc; 1994 Mar; 69(3):249-57. PubMed ID: 8133663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolution of the subcellular site of very long-chain fatty acid beta-oxidation in human skin fibroblasts using a novel approach.
    Jakobs BS; Wanders RJ
    Prog Clin Biol Res; 1992; 375():231-8. PubMed ID: 1438368
    [No Abstract]   [Full Text] [Related]  

  • 29. The inborn errors of mitochondrial fatty acid oxidation.
    Vianey-Liaud C; Divry P; Gregersen N; Mathieu M
    J Inherit Metab Dis; 1987; 10 Suppl 1():159-200. PubMed ID: 3119938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of fatty acid oxidation intermediates in cultured fibroblasts to detect mitochondrial oxidation disorders.
    Pourfarzam M; Schaefer J; Turnbull DM; Bartlett K
    Clin Chem; 1994 Dec; 40(12):2267-75. PubMed ID: 7988014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defects of fatty acid oxidation in skeletal muscle.
    Turnbull DM; Bartlett K; Watmough NJ; Shepherd IM; Sherratt HS
    J Inherit Metab Dis; 1987; 10 Suppl 1():105-12. PubMed ID: 3119934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical approach to treatable inborn metabolic diseases: an introduction.
    Saudubray JM; Sedel F; Walter JH
    J Inherit Metab Dis; 2006; 29(2-3):261-74. PubMed ID: 16763886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deficiency of the pyruvate dehydrogenase complex and of mitochondrial fatty acid oxidation.
    Bindoff LA; Birch-Machin MA; Jackson S; Singh Kler R; Bartlett K; Turnbull DM
    Rev Neurol (Paris); 1991; 147(6-7):526-31. PubMed ID: 1962058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of respiratory chain dysfunction by measuring lactate and pyruvate production in cultured fibroblasts.
    Wijburg FA; Feller N; Ruitenbeek W; Trijbels JM; Sengers RC; Scholte HR; Przyrembel H; Wanders RJ
    J Inherit Metab Dis; 1990; 13(3):355-8. PubMed ID: 2172645
    [No Abstract]   [Full Text] [Related]  

  • 35. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation.
    Saudubray JM; Coudé FX; Demaugre F; Johnson C; Gibson KM; Nyhan WL
    Pediatr Res; 1982 Oct; 16(10):877-81. PubMed ID: 7145511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyruvate and hydroxycitrate/carnitine may synergize to promote reverse electron transport in hepatocyte mitochondria, effectively 'uncoupling' the oxidation of fatty acids.
    McCarty MF; Gustin JC
    Med Hypotheses; 1999 May; 52(5):407-16. PubMed ID: 10416948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency.
    Olsen RK; Olpin SE; Andresen BS; Miedzybrodzka ZH; Pourfarzam M; Merinero B; Frerman FE; Beresford MW; Dean JC; Cornelius N; Andersen O; Oldfors A; Holme E; Gregersen N; Turnbull DM; Morris AA
    Brain; 2007 Aug; 130(Pt 8):2045-54. PubMed ID: 17584774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition by valproic acid of pyruvate uptake by brain mitochondria.
    Benavides J; Martin A; Ugarte M; Valdivieso F
    Biochem Pharmacol; 1982 Apr; 31(8):1633-6. PubMed ID: 6807323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorylation coupled to acyl-coenzyme A dehydrogenase-linked oxidation of fatty acids by liver and heart mitochondria.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1972 Sep; 275(3):298-301. PubMed ID: 5070055
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.