These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31199395)

  • 1. Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance.
    Qing YM; Ma HF; Yu S; Cui TJ
    Opt Lett; 2019 Jun; 44(12):3118-3121. PubMed ID: 31199395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Bloch surface waves to cavity-mode resonances reaching an ultrahigh sensitivity and a figure of merit.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2023 Nov; 48(22):6068-6071. PubMed ID: 37966791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel S-Bend Resonator Based on a Multi-Mode Waveguide with Mode Discrimination for a Refractive Index Sensor.
    Kim DH; Jeon SJ; Lee JS; Hong SH; Choi YW
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide Incidence Angle-Insensitive Metamaterial Absorber for Both TE and TM Polarization using Eight-Circular-Sector.
    Nguyen TT; Lim S
    Sci Rep; 2017 Jun; 7(1):3204. PubMed ID: 28600523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-insensitive and wide-incident-angle optical absorber with periodically patterned graphene-dielectric arrays.
    Zou X; Zheng G; Cong J; Xu L; Chen Y; Lai M
    Opt Lett; 2018 Jan; 43(1):46-49. PubMed ID: 29328193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable plasmon-induced transparency in hybrid waveguide-magnetic resonance system.
    Song J; Song Y; Li K; Zhang Z; Wei X; Xu Y; Song G
    Appl Opt; 2015 Mar; 54(9):2279-82. PubMed ID: 25968511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.
    Huang XT; Lu CH; Rong CC; Wang SM; Liu MH
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29693645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array.
    Feng R; Qiu J; Cao Y; Liu L; Ding W; Chen L
    Opt Express; 2015 Aug; 23(16):21023-31. PubMed ID: 26367954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-parameter sensing of refractive index and pressure by dual-polarization microresonators.
    Zhang P; Yan Z; Zhang C
    Appl Opt; 2021 Dec; 60(35):10849-10854. PubMed ID: 35200846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angle- and Polarization-Insensitive Metamaterial Absorber using Via Array.
    Lim D; Lee D; Lim S
    Sci Rep; 2016 Dec; 6():39686. PubMed ID: 28000770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalent circuit model of graphene chiral multi-band metadevice absorber composed of U-shaped resonator array.
    Asgari S; Fabritius T
    Opt Express; 2020 Dec; 28(26):39850-39867. PubMed ID: 33379526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An all-dielectric metasurface based on Fano resonance with tunable dual-peak insensitive polarization for high-performance refractive index sensing.
    Liu Z; Du J; Chi Z; Cong H; Wang B
    Phys Chem Chem Phys; 2023 Oct; 25(41):28094-28103. PubMed ID: 37818608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene.
    Chen H; Chen Z; Yang H; Wen L; Yi Z; Zhou Z; Dai B; Zhang J; Wu X; Wu P
    RSC Adv; 2022 Mar; 12(13):7821-7829. PubMed ID: 35424732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-narrowband absorption filter based on a multilayer waveguide structure.
    Peng W; Zhang G; Lv Y; Qin L; Qi K
    Opt Express; 2021 May; 29(10):14582-14600. PubMed ID: 33985178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM₀ Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure.
    Wang X; Wu X; Zhu J; Pang Z; Yang H; Qi Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.
    Tang Y; Zhang Z; Wang R; Hai Z; Xue C; Zhang W; Yan S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28383510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor.
    Wang M; Zhang M; Wang Y; Zhao R; Yan S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure.
    Chou Chau YF; Ming TY; Chou Chao CT; Thotagamuge R; Kooh MRR; Huang HJ; Lim CM; Chiang HP
    Sci Rep; 2021 Sep; 11(1):18515. PubMed ID: 34531463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic sensors with an ultra-high figure of merit.
    Liu Z; Liu G; Liu X; Fu G
    Nanotechnology; 2020 Mar; 31(11):115208. PubMed ID: 31751986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.