These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31199543)

  • 1. Terrestrial gross primary production: Using NIR
    Badgley G; Anderegg LDL; Berry JA; Field CB
    Glob Chang Biol; 2019 Nov; 25(11):3731-3740. PubMed ID: 31199543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canopy near-infrared reflectance and terrestrial photosynthesis.
    Badgley G; Field CB; Berry JA
    Sci Adv; 2017 Mar; 3(3):e1602244. PubMed ID: 28345046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data.
    Wang S; Zhang Y; Ju W; Qiu B; Zhang Z
    Sci Total Environ; 2021 Feb; 755(Pt 2):142569. PubMed ID: 33038811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations.
    Li X; Xiao J; He B; Altaf Arain M; Beringer J; Desai AR; Emmel C; Hollinger DY; Krasnova A; Mammarella I; Noe SM; Ortiz PS; Rey-Sanchez AC; Rocha AV; Varlagin A
    Glob Chang Biol; 2018 Sep; 24(9):3990-4008. PubMed ID: 29733483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the phenology of photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest.
    Wong CYS; D'Odorico P; Arain MA; Ensminger I
    New Phytol; 2020 Jun; 226(6):1682-1695. PubMed ID: 32039477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental controls on the light use efficiency of terrestrial gross primary production.
    Bloomfield KJ; Stocker BD; Keenan TF; Prentice IC
    Glob Chang Biol; 2023 Feb; 29(4):1037-1053. PubMed ID: 36334075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annual and seasonal variations in gross primary productivity across the agro-climatic regions in India.
    Varghese R; Behera MD
    Environ Monit Assess; 2019 Sep; 191(10):631. PubMed ID: 31520222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vegetation canopy structure mediates the response of gross primary production to environmental drivers across multiple temporal scales.
    Zheng Y; Zhao W; Chen A; Chen Y; Chen J; Zhu Z
    Sci Total Environ; 2024 Mar; 917():170439. PubMed ID: 38281630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis.
    Barman R; Jain AK; Liang M
    Glob Chang Biol; 2014 May; 20(5):1394-411. PubMed ID: 24273031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models.
    Parazoo NC; Bowman K; Fisher JB; Frankenberg C; Jones DB; Cescatti A; Pérez-Priego O; Wohlfahrt G; Montagnani L
    Glob Chang Biol; 2014 Oct; 20(10):3103-21. PubMed ID: 24909755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the net primary productivity of winter wheat based on the near-infrared radiance of vegetation.
    Zhao W; Wu J; Shen Q; Liu L; Lin J; Yang J
    Sci Total Environ; 2022 Sep; 838(Pt 2):156090. PubMed ID: 35609689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating terrestrial gross primary productivity in water limited ecosystems across Africa using the Southampton Carbon Flux (SCARF) model.
    Chiwara P; Ogutu BO; Dash J; Milton EJ; Ardö J; Saunders M; Nicolini G
    Sci Total Environ; 2018 Jul; 630():1472-1483. PubMed ID: 29727926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data.
    Xu X; Du H; Fan W; Hu J; Mao F; Dong H
    J Environ Manage; 2019 Sep; 246():605-616. PubMed ID: 31202828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years.
    Lees KJ; Quaife T; Artz RRE; Khomik M; Sottocornola M; Kiely G; Hambley G; Hill T; Saunders M; Cowie NR; Ritson J; Clark JM
    J Environ Manage; 2019 Sep; 246():594-604. PubMed ID: 31202827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years.
    Cui Y; Xiao X; Zhang Y; Dong J; Qin Y; Doughty RB; Zhang G; Wang J; Wu X; Qin Y; Zhou S; Joiner J; Moore B
    Sci Rep; 2017 Nov; 7(1):14963. PubMed ID: 29097731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery.
    Danelichen VH; Biudes MS; Velasque MC; Machado NG; Gomes RS; Vourlitis GL; Nogueira JS
    An Acad Bras Cienc; 2015 Sep; 87(3):1545-64. PubMed ID: 26221990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison.
    Lu X; Cheng X; Li X; Chen J; Sun M; Ji M; He H; Wang S; Li S; Tang J
    Sci Total Environ; 2018 Dec; 644():439-451. PubMed ID: 29981994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.
    Yang H; Yang X; Zhang Y; Heskel MA; Lu X; Munger JW; Sun S; Tang J
    Glob Chang Biol; 2017 Jul; 23(7):2874-2886. PubMed ID: 27976474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.
    Beer C; Reichstein M; Tomelleri E; Ciais P; Jung M; Carvalhais N; Rödenbeck C; Arain MA; Baldocchi D; Bonan GB; Bondeau A; Cescatti A; Lasslop G; Lindroth A; Lomas M; Luyssaert S; Margolis H; Oleson KW; Roupsard O; Veenendaal E; Viovy N; Williams C; Woodward FI; Papale D
    Science; 2010 Aug; 329(5993):834-8. PubMed ID: 20603496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.
    Yuan W; Liu S; Dong W; Liang S; Zhao S; Chen J; Xu W; Li X; Barr A; Andrew Black T; Yan W; Goulden ML; Kulmala L; Lindroth A; Margolis HA; Matsuura Y; Moors E; van der Molen M; Ohta T; Pilegaard K; Varlagin A; Vesala T
    Nat Commun; 2014 Jun; 5():4270. PubMed ID: 24967601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.