BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 31199589)

  • 1. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy.
    Gao Q; Dong X; Xu Q; Zhu L; Wang F; Hou Y; Chao CC
    Cancer Med; 2019 Aug; 8(9):4254-4264. PubMed ID: 31199589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges.
    Zhi L; Su X; Yin M; Zhang Z; Lu H; Niu Z; Guo C; Zhu W; Zhang X
    Cell Immunol; 2021 Nov; 369():104436. PubMed ID: 34500148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy.
    Liu X; Zhao Y
    Curr Res Transl Med; 2018 May; 66(2):39-42. PubMed ID: 29691200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy.
    Naeem M; Hazafa A; Bano N; Ali R; Farooq M; Razak SIA; Lee TY; Devaraj S
    Life Sci; 2023 Mar; 316():121409. PubMed ID: 36681183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing.
    Liu J; Zhou G; Zhang L; Zhao Q
    Front Immunol; 2019; 10():456. PubMed ID: 30941126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy.
    Huang D; Miller M; Ashok B; Jain S; Peppas NA
    Adv Drug Deliv Rev; 2020; 158():17-35. PubMed ID: 32707148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing.
    Dimitri A; Herbst F; Fraietta JA
    Mol Cancer; 2022 Mar; 21(1):78. PubMed ID: 35303871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer.
    Fix SM; Jazaeri AA; Hwu P
    Cancer Discov; 2021 Mar; 11(3):560-574. PubMed ID: 33563662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy.
    Ghaffari S; Khalili N; Rezaei N
    J Exp Clin Cancer Res; 2021 Aug; 40(1):269. PubMed ID: 34446084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of CRISPR-Cas9 application in novel cellular immunotherapy.
    Quazi S
    Mol Biol Rep; 2022 Jul; 49(7):7069-7077. PubMed ID: 35122203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy.
    Salas-Mckee J; Kong W; Gladney WL; Jadlowsky JK; Plesa G; Davis MM; Fraietta JA
    Hum Vaccin Immunother; 2019; 15(5):1126-1132. PubMed ID: 30735463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA
    Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of CRISPR/CAS9 genome modification in T cell-based immunotherapy of cancer.
    Kavousinia P; Ahmadi MH; Sadeghian H; Hosseini Bafghi M
    Cytotherapy; 2024 May; 26(5):436-443. PubMed ID: 38466263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy.
    Tipanee J; Samara-Kuko E; Gevaert T; Chuah MK; VandenDriessche T
    Mol Ther; 2022 Oct; 30(10):3155-3175. PubMed ID: 35711141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy.
    Rath JA; Arber C
    Cells; 2020 Jun; 9(6):. PubMed ID: 32570906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted?
    Wälchli S; Sioud M
    Methods Mol Biol; 2020; 2115():407-417. PubMed ID: 32006413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency of genetic modification using CRISPR/Cpf1 system for engineered CAR-T cell therapy.
    Ding R; Chao CC; Gao Q
    Methods Cell Biol; 2022; 167():1-14. PubMed ID: 35152989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.