These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31199936)
1. Interlaboratory reproducibility of a test method following 4-field test methodology to evaluate the susceptibility of Clostridium difficile spores. Gemein S; Gebel J; Christiansen B; Martiny H; Vossebein L; Brill FHH; Decius M; Eggers M; Koburger-Janssen T; Meckel M; Werner S; Hunsinger B; Selhorst T; Kampf G; Exner M J Hosp Infect; 2019 Sep; 103(1):78-84. PubMed ID: 31199936 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of five 'sporicidal' surface disinfectants against Clostridioides difficile spores in suspension tests and 4-field tests. Gemein S; Andrich R; Christiansen B; Decius M; Exner M; Hunsinger B; Imenova E; Kampf G; Koburger-Janssen T; Konrat K; Martiny H; Meckel M; Mutters NT; Pitten FA; Schulz S; Schwebke I; Gebel J J Hosp Infect; 2022 Apr; 122():140-147. PubMed ID: 35077809 [TBL] [Abstract][Full Text] [Related]
3. Impact of standard test protocols on sporicidal efficacy. Wesgate R; Rauwel G; Criquelion J; Maillard JY J Hosp Infect; 2016 Jul; 93(3):256-62. PubMed ID: 27133281 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Clostridium difficile spores by disinfectants. Rutala WA; Gergen MF; Weber DJ Infect Control Hosp Epidemiol; 1993 Jan; 14(1):36-9. PubMed ID: 8432966 [TBL] [Abstract][Full Text] [Related]
5. Sporicidal activity of two disinfectants against Clostridium difficile spores. Wheeldon LJ; Worthington T; Hilton AC; Lambert PA; Elliott TS Br J Nurs; 2008 Mar 13-26; 17(5):316-20. PubMed ID: 18414294 [TBL] [Abstract][Full Text] [Related]
6. Development of a sporicidal test method for Clostridium difficile. Fraise AP; Wilkinson MA; Bradley CR; Paton S; Walker J; Maillard JY; Wesgate RL; Hoffman P; Coia J; Woodall C; Fry C; Wilcox M J Hosp Infect; 2015 Jan; 89(1):2-15. PubMed ID: 25477061 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of AISI Type 304 stainless steel as a suitable surface material for evaluating the efficacy of peracetic acid-based disinfectants against Clostridium difficile spores. Black E; Owens K; Staub R; Li J; Mills K; Valenstein J; Hilgren J PLoS One; 2017; 12(10):e0187074. PubMed ID: 29065168 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility of Chojecka A Pol J Microbiol; 2022 Sep; 71(3):353-358. PubMed ID: 36185021 [TBL] [Abstract][Full Text] [Related]
9. In vitro production of Clostridium difficile spores for use in the efficacy evaluation of disinfectants: a precollaborative investigation. Hasan JA; Japal KM; Christensen ER; Samalot-Freire LC J AOAC Int; 2011; 94(1):259-72. PubMed ID: 21391503 [TBL] [Abstract][Full Text] [Related]
10. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants]. Votava M; Slitrová B Epidemiol Mikrobiol Imunol; 2009 Feb; 58(1):36-42. PubMed ID: 19358452 [TBL] [Abstract][Full Text] [Related]
11. Effect of hospital disinfectants on spores of clinical Brazilian Clostridium difficile strains. Ferreira TG; Barbosa TF; Teixeira FL; Ferreira Ede O; Duarte RS; Domingues RM; de Paula GR Anaerobe; 2013 Aug; 22():121-2. PubMed ID: 23644034 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of three surface disinfectants against spores of Clostridium difficile ribotype 027. Horejsh D; Kampf G Int J Hyg Environ Health; 2011 Mar; 214(2):172-4. PubMed ID: 21134785 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the sporicidal activity of different chemical disinfectants used in hospitals against Clostridium difficile. Speight S; Moy A; Macken S; Chitnis R; Hoffman PN; Davies A; Bennett A; Walker JT J Hosp Infect; 2011 Sep; 79(1):18-22. PubMed ID: 21802172 [TBL] [Abstract][Full Text] [Related]
14. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants. March JK; Pratt MD; Lowe CW; Cohen MN; Satterfield BA; Schaalje B; O'Neill KL; Robison RA Microbiologyopen; 2015 Oct; 4(5):764-73. PubMed ID: 26185111 [TBL] [Abstract][Full Text] [Related]
15. Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Moorhead S; Maclean M; Coia JE; MacGregor SJ; Anderson JG Anaerobe; 2016 Feb; 37():72-7. PubMed ID: 26708703 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the disinfectant efficacy of Perasafe and 2% glutaraldehyde in in vitro tests. Vizcaino-Alcaide MJ; Herruzo-Cabrera R; Fernandez-Aceñero MJ J Hosp Infect; 2003 Feb; 53(2):124-8. PubMed ID: 12586572 [TBL] [Abstract][Full Text] [Related]
17. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile. Oie S; Obayashi A; Yamasaki H; Furukawa H; Kenri T; Takahashi M; Kawamoto K; Makino S Biol Pharm Bull; 2011; 34(8):1325-9. PubMed ID: 21804226 [TBL] [Abstract][Full Text] [Related]
18. The activity of glutaraldehyde against Clostridium difficile. Dyas A; Das BC J Hosp Infect; 1985 Mar; 6(1):41-5. PubMed ID: 2859321 [TBL] [Abstract][Full Text] [Related]
19. The effect of Perasafe and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces. Block C J Hosp Infect; 2004 Jun; 57(2):144-8. PubMed ID: 15183245 [TBL] [Abstract][Full Text] [Related]
20. Biocide Resistance and Transmission of Clostridium difficile Spores Spiked onto Clinical Surfaces from an American Health Care Facility. Dyer C; Hutt LP; Burky R; Joshi LT Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31300397 [No Abstract] [Full Text] [Related] [Next] [New Search]