These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31199995)

  • 1. Versatile electrostatically assembled polymeric siRNA nanovectors: Can they overcome the limits of siRNA tumor delivery?
    Ben Djemaa S; Munnier E; Chourpa I; Allard-Vannier E; David S
    Int J Pharm; 2019 Aug; 567():118432. PubMed ID: 31199995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis.
    Ben Djemaa S; David S; Hervé-Aubert K; Falanga A; Galdiero S; Allard-Vannier E; Chourpa I; Munnier E
    Eur J Pharm Biopharm; 2018 Oct; 131():99-108. PubMed ID: 30063968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility.
    Han L; Zhao J; Zhang X; Cao W; Hu X; Zou G; Duan X; Liang XJ
    ACS Nano; 2012 Aug; 6(8):7340-51. PubMed ID: 22838646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.
    Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M
    Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(β-aminoester) Physicochemical Properties Govern the Delivery of siRNA from Electrostatically Assembled Coatings.
    Berger AG; DeLorenzo C; Vo C; Kaskow JA; Nabar N; Hammond PT
    Biomacromolecules; 2024 May; 25(5):2934-2952. PubMed ID: 38687965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Collaborative Assembly Strategy for Tumor-Targeted siRNA Delivery.
    Sun Q; Kang Z; Xue L; Shang Y; Su Z; Sun H; Ping Q; Mo R; Zhang C
    J Am Chem Soc; 2015 May; 137(18):6000-10. PubMed ID: 25869911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery.
    Han L; Tang C; Yin C
    Biomaterials; 2015 Mar; 44():111-21. PubMed ID: 25617131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triggered RNAi Therapy Using Metal Inorganic Nanovectors.
    Villar-Alvarez E; Leal BH; Cambón A; Pardo A; Martínez-Gonzalez R; Fernández-Vega J; Al-Qadi S; Mosquera VX; Bouzas A; Barbosa S; Taboada P
    Mol Pharm; 2019 Aug; 16(8):3374-3385. PubMed ID: 31188622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow Inorganic Nanoparticles as Efficient Carriers for siRNA Delivery: A Comprehensive Review.
    Varshosaz J; Taymouri S
    Curr Pharm Des; 2015; 21(29):4310-28. PubMed ID: 26323421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanovector delivery of siRNA for cancer therapy.
    Shen H; Sun T; Ferrari M
    Cancer Gene Ther; 2012 Jun; 19(6):367-73. PubMed ID: 22555511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gH625 Cell-Penetrating Peptide Promotes the Endosomal Escape of Nanovectorized siRNA in a Triple-Negative Breast Cancer Cell Line.
    Ben Djemaa S; Hervé-Aubert K; Lajoie L; Falanga A; Galdiero S; Nedellec S; Soucé M; Munnier E; Chourpa I; David S; Allard-Vannier E
    Biomacromolecules; 2019 Aug; 20(8):3076-3086. PubMed ID: 31305991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic acid delivery: the missing pieces of the puzzle?
    Nguyen J; Szoka FC
    Acc Chem Res; 2012 Jul; 45(7):1153-62. PubMed ID: 22428908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles.
    Liu Y; Song Z; Zheng N; Nagasaka K; Yin L; Cheng J
    Nanoscale; 2018 Aug; 10(32):15339-15349. PubMed ID: 30070662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic delivery of siRNA by aminated poly(α)glutamate for the treatment of solid tumors.
    Polyak D; Krivitsky A; Scomparin A; Eliyahu S; Kalinski H; Avkin-Nachum S; Satchi-Fainaro R
    J Control Release; 2017 Jul; 257():132-143. PubMed ID: 27356019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.
    Zhu J; Qiao M; Wang Q; Ye Y; Ba S; Ma J; Hu H; Zhao X; Chen D
    Biomaterials; 2018 Apr; 162():47-59. PubMed ID: 29432988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells.
    Golan M; Feinshtein V; David A
    Eur J Pharm Biopharm; 2016 Dec; 109():103-112. PubMed ID: 27702685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-based siRNA delivery systems.
    Ragelle H; Vandermeulen G; Préat V
    J Control Release; 2013 Nov; 172(1):207-218. PubMed ID: 23965281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids.
    Arnold AE; Czupiel P; Shoichet M
    J Control Release; 2017 Aug; 259():3-15. PubMed ID: 28232223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylenimine as a promising vector for targeted siRNA delivery.
    Nimesh S
    Curr Clin Pharmacol; 2012 May; 7(2):121-30. PubMed ID: 22432843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo.
    Oliveira S; Høgset A; Storm G; Schiffelers RM
    Curr Pharm Des; 2008; 14(34):3686-97. PubMed ID: 19075744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.