BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31200008)

  • 1. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach.
    Hernandez EP; Talactac MR; Fujisaki K; Tanaka T
    Dev Comp Immunol; 2019 Nov; 100():103409. PubMed ID: 31200008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tick vaccines and the control of tick-borne pathogens.
    Merino O; Alberdi P; Pérez de la Lastra JM; de la Fuente J
    Front Cell Infect Microbiol; 2013; 3():30. PubMed ID: 23847771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Invasion vs. Tick Immune Regulation.
    Sonenshine DE; Macaluso KR
    Front Cell Infect Microbiol; 2017; 7():390. PubMed ID: 28929088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tick immunobiology.
    Brossard M; Wikel SK
    Parasitology; 2004; 129 Suppl():S161-76. PubMed ID: 15940820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases?
    Boulanger N; Wikel S
    Front Immunol; 2021; 12():625993. PubMed ID: 33643313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tick Bioactive Molecules as Novel Therapeutics: Beyond Vaccine Targets.
    Murfin KE; Fikrig E
    Front Cell Infect Microbiol; 2017; 7():222. PubMed ID: 28634573
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of the tick-pathogen interface by quantitative proteomics.
    Villar M; Popara M; Bonzón-Kulichenko E; Ayllón N; Vázquez J; de la Fuente J
    Ticks Tick Borne Dis; 2012 Jun; 3(3):154-8. PubMed ID: 22647712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tick endosymbiont Candidatus Midichloria mitochondrii and selenoproteins are essential for the growth of Rickettsia parkeri in the Gulf Coast tick vector.
    Budachetri K; Kumar D; Crispell G; Beck C; Dasch G; Karim S
    Microbiome; 2018 Aug; 6(1):141. PubMed ID: 30103809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases.
    Artigas-Jerónimo S; De La Fuente J; Villar M
    Expert Rev Proteomics; 2018 Aug; 15(8):627-635. PubMed ID: 30067120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editorial: Tick-Host-Pathogen Interactions.
    Bonnet SI; Nijhof AM; de la Fuente J
    Front Cell Infect Microbiol; 2018; 8():194. PubMed ID: 29963500
    [No Abstract]   [Full Text] [Related]  

  • 11. Prevention and control strategies for ticks and pathogen transmission.
    de La Fuente J; Kocan KM; Contreras M
    Rev Sci Tech; 2015 Apr; 34(1):249-64. PubMed ID: 26470461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the tick immune system with transmitted pathogens.
    Hajdušek O; Síma R; Ayllón N; Jalovecká M; Perner J; de la Fuente J; Kopáček P
    Front Cell Infect Microbiol; 2013; 3():26. PubMed ID: 23875177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How ticks keep ticking in the adversity of host immune reactions.
    Jennings R; Kuang Y; Thieme HR; Wu J; Wu X
    J Math Biol; 2019 Apr; 78(5):1331-1364. PubMed ID: 30478760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tick saliva in anti-tick immunity and pathogen transmission.
    Kovár L
    Folia Microbiol (Praha); 2004; 49(3):327-36. PubMed ID: 15259776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era.
    Grabowski JM; Hill CA
    Front Cell Infect Microbiol; 2017; 7():519. PubMed ID: 29312896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission.
    Blisnick AA; Foulon T; Bonnet SI
    Front Cell Infect Microbiol; 2017; 7():199. PubMed ID: 28589099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-tick and pathogen transmission blocking vaccines.
    van Oosterwijk JG
    Parasite Immunol; 2021 May; 43(5):e12831. PubMed ID: 33704804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases.
    de la Fuente J; Antunes S; Bonnet S; Cabezas-Cruz A; Domingos AG; Estrada-Peña A; Johnson N; Kocan KM; Mansfield KL; Nijhof AM; Papa A; Rudenko N; Villar M; Alberdi P; Torina A; Ayllón N; Vancova M; Golovchenko M; Grubhoffer L; Caracappa S; Fooks AR; Gortazar C; Rego ROM
    Front Cell Infect Microbiol; 2017; 7():114. PubMed ID: 28439499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The probable utilization of the protective properties of the vector's saliva by the causative agents of specifically tick-borne infections].
    Alekseev AN; Podboronov VM; Burenkova LA
    Parazitologiia; 1995; 29(3):154-8. PubMed ID: 7567075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational biotechnology for the control of ticks and tick-borne diseases.
    de la Fuente J
    Ticks Tick Borne Dis; 2021 Sep; 12(5):101738. PubMed ID: 34023540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.